Virtual Turning Points

The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Honda, Naofumi (Συγγραφέας), Kawai, Takahiro (Συγγραφέας), Takei, Yoshitsugu (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Mathematical Physics, 4
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02853nam a22005175i 4500
001 978-4-431-55702-9
003 DE-He213
005 20170304022051.0
007 cr nn 008mamaa
008 150707s2015 ja | s |||| 0|eng d
020 |a 9784431557029  |9 978-4-431-55702-9 
024 7 |a 10.1007/978-4-431-55702-9  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Honda, Naofumi.  |e author. 
245 1 0 |a Virtual Turning Points  |h [electronic resource] /  |c by Naofumi Honda, Takahiro Kawai, Yoshitsugu Takei. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2015. 
300 |a XII, 126 p. 47 illus., 6 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 4 
505 0 |a 1. Definition and basic properties of virtual turning Points -- 2. Application to the Noumi-Yamada system with a large Parameter -- 3. Exact WKB analysis of non-adiabatic transition problems for 3-levels -- A. Integral representation of solutions and the Borel resummed WKBsolutions. 
520 |a The discovery of a virtual turning point truly is a breakthrough in WKB analysis of higher order differential equations. This monograph expounds the core part of its theory together with its application to the analysis of higher order Painlevé equations of the Noumi–Yamada type and to the analysis of non-adiabatic transition probability problems in three levels. As M.V. Fedoryuk once lamented, global asymptotic analysis of higher order differential equations had been thought to be impossible to construct. In 1982, however, H.L. Berk, W.M. Nevins, and K.V. Roberts published a remarkable paper in the Journal of Mathematical Physics indicating that the traditional Stokes geometry cannot globally describe the Stokes phenomena of solutions of higher order equations; a new Stokes curve is necessary. 
650 0 |a Mathematics. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Quantum Physics. 
700 1 |a Kawai, Takahiro.  |e author. 
700 1 |a Takei, Yoshitsugu.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431557012 
830 0 |a SpringerBriefs in Mathematical Physics,  |x 2197-1757 ;  |v 4 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-55702-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)