Treks into Intuitive Geometry The World of Polygons and Polyhedra /

This book is written in a style that uncovers the mathematical theories buried in our everyday lives such as examples from patterns that appear in nature, art, and traditional crafts, and in mathematical mechanisms in techniques used by architects. The authors believe that through dialogues between...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Akiyama, Jin (Συγγραφέας), Matsunaga, Kiyoko (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03611nam a22004815i 4500
001 978-4-431-55843-9
003 DE-He213
005 20151204091759.0
007 cr nn 008mamaa
008 151204s2015 ja | s |||| 0|eng d
020 |a 9784431558439  |9 978-4-431-55843-9 
024 7 |a 10.1007/978-4-431-55843-9  |2 doi 
040 |d GrThAP 
050 4 |a NX180.M33 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Akiyama, Jin.  |e author. 
245 1 0 |a Treks into Intuitive Geometry  |h [electronic resource] :  |b The World of Polygons and Polyhedra /  |c by Jin Akiyama, Kiyoko Matsunaga. 
250 |a 1st ed. 2015. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 425 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1 Art From Tiling Patterns -- Chapter 2 The Tile-Maker Theorem and Its Applications to Art and Designs -- Chapter 3 Patchwork -- Chapter 4 Reversible Pairs of Figures -- Chapter 5 Platonic Solids -- Chapter 6 Cross-Sections of Polyhedra -- Chapter 7 Symmetry of Platonic Solids -- Chapter 8 Double Duty Solids -- Chapter 9 Nets of Small Solids with Minimum Perimeter Lengths -- Chapter 10 Tessellation Polyhedra -- Chapter 11 Universal Measuring Boxes -- Chapter 12 Wrapping a Box -- Chapter 13 Bees, Pomegranates and Parallelohedra -- Chapter 14 Reversible Polyhedra -- Chapter 15 Elements of Polygons and Polyhedra -- Chapter 16 The Pentadron. 
520 |a This book is written in a style that uncovers the mathematical theories buried in our everyday lives such as examples from patterns that appear in nature, art, and traditional crafts, and in mathematical mechanisms in techniques used by architects. The authors believe that through dialogues between students and mathematicians, readers may discover the processes by which the founders of the theories came to their various conclusions―their trials, errors, tribulations, and triumphs. The goal is for readers to refine their mathematical sense of how to find good questions and how to grapple with these problems. Another aim is to provide enjoyment in the process of applying mathematical rules to beautiful art and design by examples that highlight the wonders and mysteries from our daily lives. To fulfill these aims, this book deals with the latest unique and beautiful results in polygons and polyhedra and the dynamism of geometrical research history that can be found around us. The term "intuitive geometry" was coined by Lászlo Fejes Tóth to refer to the kind of geometry which, in Hilbert's words, can be explained to and appeal to the "man on the street." This book allows people to enjoy intuitive geometry informally and instinctively. It does not require more than a high school level of knowledge but calls for a sense of wonder, intuition, and mathematical maturity. 
650 0 |a Mathematics. 
650 0 |a Polytopes. 
650 0 |a Discrete mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics in Art and Architecture. 
650 2 4 |a Polytopes. 
650 2 4 |a Discrete Mathematics. 
650 2 4 |a Popular Science in Mathematics. 
700 1 |a Matsunaga, Kiyoko.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431558415 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-55843-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)