Separating Information Maximum Likelihood Method for High-Frequency Financial Data
This book presents a systematic explanation of the SIML (Separating Information Maximum Likelihood) method, a new approach to financial econometrics. Considerable interest has been given to the estimation problem of integrated volatility and covariance by using high-frequency financial data. Althoug...
Κύριοι συγγραφείς: | Kunitomo, Naoto (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Sato, Seisho (http://id.loc.gov/vocabulary/relators/aut), Kurisu, Daisuke (http://id.loc.gov/vocabulary/relators/aut) |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | SpringerLink (Online service) |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Tokyo :
Springer Japan : Imprint: Springer,
2018.
|
Έκδοση: | 1st ed. 2018. |
Σειρά: | JSS Research Series in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Παρόμοια τεκμήρια
-
R For Marketing Research and Analytics
ανά: Chapman, Chris, κ.ά.
Έκδοση: (2019) -
Studies in Theoretical and Applied Statistics SIS 2016, Salerno, Italy, June 8-10 /
Έκδοση: (2018) -
Asymmetric Kernel Smoothing Theory and Applications in Economics and Finance /
ανά: Hirukawa, Masayuki, κ.ά.
Έκδοση: (2018) -
Statistical Methods in Social Science Research
ανά: Mukherjee, S P., κ.ά.
Έκδοση: (2018) -
Trends and Perspectives in Linear Statistical Inference LinStat, Istanbul, August 2016 /
Έκδοση: (2018)