Structural Analysis of Metallic Glasses with Computational Homology

This book introduces the application of computational homology for structural analysis of metallic glasses. Metallic glasses, relatively new materials in the field of metals, are the next-generation structural and functional materials owing to their excellent properties. To understand their properti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hirata, Akihiko (Συγγραφέας), Matsue, Kaname (Συγγραφέας), Chen, Mingwei (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2016.
Σειρά:SpringerBriefs in the Mathematics of Materials, 2
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03698nam a22005175i 4500
001 978-4-431-56056-2
003 DE-He213
005 20160405094323.0
007 cr nn 008mamaa
008 160405s2016 ja | s |||| 0|eng d
020 |a 9784431560562  |9 978-4-431-56056-2 
024 7 |a 10.1007/978-4-431-56056-2  |2 doi 
040 |d GrThAP 
050 4 |a QC19.2-20.85 
072 7 |a PBWH  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Hirata, Akihiko.  |e author. 
245 1 0 |a Structural Analysis of Metallic Glasses with Computational Homology  |h [electronic resource] /  |c by Akihiko Hirata, Kaname Matsue, Mingwei Chen. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 66 p. 33 illus., 7 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 2 
505 0 |a 1. Introduction -- 2. Metallic glasses -- 2.1. What is glass? -- 2-2. Structure and properties of metallic glasses -- 2-3. Structure determination and its difficulty -- 3. Homology and computational homology -- 3.1. Cubical complex -- 3.2. Cubical homology -- 3.3. Computing homology groups -- 4. Structure analysis of metallic glasses -- 4.1. Advantage of computational homology -- 4.2. Preparation of input data for metallic glasses -- 4.3. Computing procedure for metallic glasses -- 4.4. Interpretation of results obtained by computational homology -- 5. Appendix. 
520 |a This book introduces the application of computational homology for structural analysis of metallic glasses. Metallic glasses, relatively new materials in the field of metals, are the next-generation structural and functional materials owing to their excellent properties. To understand their properties and to develop novel metallic glass materials, it is necessary to uncover their atomic structures which have no periodicity, unlike crystals. Although many experimental and simulation studies have been performed to reveal the structures, it is extremely difficult to perceive a relationship between structures and properties without an appropriate point of view, or language. The purpose here is to show how a new approach using computational homology gives a useful insight into the interpretation of atomic structures. It is noted that computational homology has rapidly developed and is now widely applied for various data analyses. The book begins with a brief basic survey of metallic glasses and computational homology, then goes on to the detailed procedures and interpretation of computational homology analysis for metallic glasses. Understandable and readable information for both materials scientists and mathematicians is also provided. 
650 0 |a Mathematics. 
650 0 |a Chemometrics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Applications in the Physical Sciences. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Math. Applications in Chemistry. 
700 1 |a Matsue, Kaname.  |e author. 
700 1 |a Chen, Mingwei.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431560548 
830 0 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 2 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-56056-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)