Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter

This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectrosco...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Hasegawa, Takeshi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03623nam a22004815i 4500
001 978-4-431-56493-5
003 DE-He213
005 20170425101824.0
007 cr nn 008mamaa
008 170425s2017 ja | s |||| 0|eng d
020 |a 9784431564935  |9 978-4-431-56493-5 
024 7 |a 10.1007/978-4-431-56493-5  |2 doi 
040 |d GrThAP 
050 4 |a QD95-96 
072 7 |a PNFS  |2 bicssc 
072 7 |a SCI078000  |2 bisacsh 
082 0 4 |a 543.2-543.8  |2 23 
100 1 |a Hasegawa, Takeshi.  |e author. 
245 1 0 |a Quantitative Infrared Spectroscopy for Understanding of a Condensed Matter  |h [electronic resource] /  |c by Takeshi Hasegawa. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2017. 
300 |a XI, 200 p. 115 illus., 55 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Infrared spectroscopy as a vibrational spectroscopy -- Normal modes -- Light absorption by a molecule: 1. Understanding by quantum mechanical approach -- Selection rule of IR spectroscopy -- Light absorption by a molecule: 2. Understanding by electrodynamical approach -- Fundamentals of FT-IR -- Two representations of spectra: Time- and frequency-domain representations -- Fourier transform relationship -- Introduction of Michaelson interferometer -- Representative detectors -- Sampling techniques -- Surface analysis using FT-IR -- Boundary conditions in electrodynamics -- Thin-film approximation -- Surface selection rules for surface spectroscopies -- Chemometrics for FT-IR -- Limitation of Beer’s law -- Expansion of Beer’s law: CLS regression -- Inverse Beer’s law: ILS regression -- Mathematical expansion of CLS: PCA -- Merge of ILS and PCA: PCR -- Independent residual terms: PLS. 
520 |a This book is intended to provide a course of infrared spectroscopy for quantitative analysis, covering both bulk matter and surface/interface analyses. Although the technology of Fourier transform infrared (FT-IR) spectroscopy was established many years ago, the full potential of infrared spectroscopy has not been properly recognized, and its intrinsic potential is still put aside. FT-IR has outstandingly useful characteristics, however, represented by the high sensitivity for monolayer analysis, highly reliable quantitativity, and reproducibility, which are quite suitable for surface and interface analysis. Because infrared spectroscopy provides rich chemical information—for example, hydrogen bonding, molecular conformation, orientation, aggregation, and crystallinity—FT-IR should be the first choice of chemical analysis in a laboratory. In this book, various analytical techniques and basic knowledge of infrared spectroscopy are described in a uniform manner. In particular, techniques for quantitative understanding are particularly focused for the reader’s convenience. 
650 0 |a Chemistry. 
650 0 |a Spectroscopy. 
650 0 |a Chemoinformatics. 
650 0 |a Physical chemistry. 
650 0 |a Materials science. 
650 1 4 |a Chemistry. 
650 2 4 |a Spectroscopy/Spectrometry. 
650 2 4 |a Computer Applications in Chemistry. 
650 2 4 |a Physical Chemistry. 
650 2 4 |a Characterization and Evaluation of Materials. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431564911 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-56493-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)