Noncausal Stochastic Calculus

This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ogawa, Shigeyoshi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2017.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02778nam a22003975i 4500
001 978-4-431-56576-5
003 DE-He213
005 20170726044015.0
007 cr nn 008mamaa
008 170726s2017 ja | s |||| 0|eng d
020 |a 9784431565765  |9 978-4-431-56576-5 
024 7 |a 10.1007/978-4-431-56576-5  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Ogawa, Shigeyoshi.  |e author. 
245 1 0 |a Noncausal Stochastic Calculus  |h [electronic resource] /  |c by Shigeyoshi Ogawa. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2017. 
300 |a XII, 210 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1 Introduction – Why the Causality? -- 2 Preliminary – Causal calculus -- 3 Noncausal Calculus -- 4 Noncausal Integral and Wiener Chaos -- 5 Noncausal SDEs -- 6 Brownian Particle Equation -- 7 Noncausal SIE -- 8 Stochastic Fourier Transformation -- 9 Appendices to Chapter 2 -- 10 Appendices 2 – Comments and Proofs -- Index. 
520 |a This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431565741 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-56576-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)