L² Approaches in Several Complex Variables Towards the Oka-Cartan Theory with Precise Bounds /

This monograph presents the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Special emphasis is put on the new precise results on the L² extension of holomorphic functions i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ohsawa, Takeo (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2018.
Έκδοση:2nd ed. 2018.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04323nam a2200517 4500
001 978-4-431-56852-0
003 DE-He213
005 20191024132814.0
007 cr nn 008mamaa
008 181128s2018 ja | s |||| 0|eng d
020 |a 9784431568520  |9 978-4-431-56852-0 
024 7 |a 10.1007/978-4-431-56852-0  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.94  |2 23 
100 1 |a Ohsawa, Takeo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a L² Approaches in Several Complex Variables  |h [electronic resource] :  |b Towards the Oka-Cartan Theory with Precise Bounds /  |c by Takeo Ohsawa. 
250 |a 2nd ed. 2018. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2018. 
300 |a XI, 258 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Part I Holomorphic Functions and Complex Spaces -- Convexity Notions -- Complex Manifolds -- Classical Questions of Several Complex Variables -- Part II The Method of L² Estimates -- Basics of Hilbert Space Theory -- Harmonic Forms -- Vanishing Theorems -- Finiteness Theorems -- Notes on Complete Kahler Domains (= CKDs) -- Part III L² Variant of Oka-Cartan Theory -- Extension Theorems -- Division Theorems -- Multiplier Ideals -- Part IV Bergman Kernels -- The Bergman Kernel and Metric -- Bergman Spaces and Associated Kernels -- Sequences of Bergman Kernels -- Parameter Dependence -- Part V L² Approaches to Holomorphic Foliations -- Holomorphic Foliation and Stable Sets -- L² Method Applied to Levi Flat Hypersurfaces -- LFHs in Tori and Hopf Surfaces. 
520 |a This monograph presents the current status of a rapidly developing part of several complex variables, motivated by the applicability of effective results to algebraic geometry and differential geometry. Special emphasis is put on the new precise results on the L² extension of holomorphic functions in the past 5 years. In Chapter 1, the classical questions of several complex variables motivating the development of this field are reviewed after necessary preparations from the basic notions of those variables and of complex manifolds such as holomorphic functions, pseudoconvexity, differential forms, and cohomology. In Chapter 2, the L² method of solving the d-bar equation is presented emphasizing its differential geometric aspect. In Chapter 3, a refinement of the Oka-Cartan theory is given by this method. The L² extension theorem with an optimal constant is included, obtained recently by Z. Błocki and separately by Q.-A. Guan and X.-Y. Zhou. In Chapter 4, various results on the Bergman kernel are presented, including recent works of Maitani-Yamaguchi, Berndtsson, Guan-Zhou, and Berndtsson-Lempert. Most of these results are obtained by the L² method. In the last chapter, rather specific results are discussed on the existence and classification of certain holomorphic foliations and Levi flat hypersurfaces as their stables sets. These are also applications of the L² method obtained during the past 15 years. 
650 0 |a Functions of complex variables. 
650 0 |a Algebraic geometry. 
650 0 |a Differential geometry. 
650 0 |a Functional analysis. 
650 1 4 |a Several Complex Variables and Analytic Spaces.  |0 http://scigraph.springernature.com/things/product-market-codes/M12198 
650 2 4 |a Algebraic Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M11019 
650 2 4 |a Differential Geometry.  |0 http://scigraph.springernature.com/things/product-market-codes/M21022 
650 2 4 |a Functional Analysis.  |0 http://scigraph.springernature.com/things/product-market-codes/M12066 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431568513 
776 0 8 |i Printed edition:  |z 9784431568537 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u https://doi.org/10.1007/978-4-431-56852-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)