Topology of Polymers

Plastics, films, and synthetic fibers are among typical examples of polymer materials fabricated industrially in massive quantities as the basis of modern social life. By comparison, polymers from biological resources, including proteins, DNAs, and cotton fibers, are essential in various processes i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Shimokawa, Koya (Συγγραφέας, http://id.loc.gov/vocabulary/relators/aut), Ishihara, Kai (http://id.loc.gov/vocabulary/relators/aut), Tezuka, Yasuyuki (http://id.loc.gov/vocabulary/relators/aut)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan : Imprint: Springer, 2019.
Έκδοση:1st ed. 2019.
Σειρά:SpringerBriefs in the Mathematics of Materials, 4
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05030nam a2200517 4500
001 978-4-431-56888-9
003 DE-He213
005 20191206084301.0
007 cr nn 008mamaa
008 191206s2019 ja | s |||| 0|eng d
020 |a 9784431568889  |9 978-4-431-56888-9 
024 7 |a 10.1007/978-4-431-56888-9  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
100 1 |a Shimokawa, Koya.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topology of Polymers  |h [electronic resource] /  |c by Koya Shimokawa, Kai Ishihara, Yasuyuki Tezuka. 
250 |a 1st ed. 2019. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2019. 
300 |a VIII, 81 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 4 
505 0 |a Topology meets polymers: Introduction -- Graph theory analyses of polymers -- Classification of polymer topologies based on alkane molecular graphs -- Types of graphs -- Knot theory analysis of polymers -- Topological operations and chemical isomerism of polymers -- Topological polymer chemistry and graph-structure construction -- Topology meets polymers: Conclusion and perspectives. 
520 |a Plastics, films, and synthetic fibers are among typical examples of polymer materials fabricated industrially in massive quantities as the basis of modern social life. By comparison, polymers from biological resources, including proteins, DNAs, and cotton fibers, are essential in various processes in living systems. Such polymers are molecular substances, constituted by the linking of hundreds to tens of thousands of small chemical unit (monomer) components. Thus, the form of polymer molecules is frequently expressed by line geometries, and their linear and non-linear forms are believed to constitute the fundamental basis for their properties and functions. In the field of polymer chemistry and polymer materials science, the choice of macromolecules has continuously been extended from linear or randomly branched forms toward a variety of precisely controlled topologies by the introduction of intriguing synthetic techniques. Moreover, during the first decade of this century, a number of impressive breakthroughs have been achieved to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unique properties and functions based on the form, i.e., topology, of polymer molecules. The introduction and application of topological geometry (soft geometry) to polymer molecules is a crucial requirement to account for the basic geometrical properties of polymer chains uniquely flexible in nature, in contrast to small chemical compounds conceived upon Euclidian geometry (hard geometry) principles. Topological geometry and graph theory are introduced for the systematic classification and notation of the non-linear constructions of polymer molecules, including not only branched but also single cyclic and multicyclic polymer topologies. On that basis, the geometrical-topological relationship between different polymers having distinctive constructions is discussed. A unique conception of topological isomerism is thus formed, which contrasts with that of conventional constitutional and stereoisomerism occurring in small chemical compounds. Through the close collaboration of topology experts Shimokawa and Ishihara and the polymer chemist Tezuka, this monograph covers the fundamentals and selected current topics of topology applied in polymers and topological polymer chemistry. In particular, the aim is to provide novel insights jointly revealed through a unique interaction between mathematics (topology) and polymer materials science. 
650 0 |a Topology. 
650 0 |a Polymers  . 
650 0 |a Graph theory. 
650 1 4 |a Topology.  |0 http://scigraph.springernature.com/things/product-market-codes/M28000 
650 2 4 |a Polymer Sciences.  |0 http://scigraph.springernature.com/things/product-market-codes/C22008 
650 2 4 |a Graph Theory.  |0 http://scigraph.springernature.com/things/product-market-codes/M29020 
700 1 |a Ishihara, Kai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tezuka, Yasuyuki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431568865 
776 0 8 |i Printed edition:  |z 9784431568872 
830 0 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 4 
856 4 0 |u https://doi.org/10.1007/978-4-431-56888-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)