Advances in Mathematical Economics

A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by v...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Kusuoka, Shigeo (Επιμελητής έκδοσης), Yamazaki, Akira (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Tokyo : Springer Japan, 2007.
Σειρά:Advances in Mathematical Economics ; 10
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03695nam a22004695i 4500
001 978-4-431-72761-3
003 DE-He213
005 20151204171918.0
007 cr nn 008mamaa
008 100301s2007 ja | s |||| 0|eng d
020 |a 9784431727613  |9 978-4-431-72761-3 
024 7 |a 10.1007/978-4-431-72761-3  |2 doi 
040 |d GrThAP 
050 4 |a HB1-846.8 
072 7 |a KCA  |2 bicssc 
072 7 |a BUS069030  |2 bisacsh 
082 0 4 |a 330.1  |2 23 
245 1 0 |a Advances in Mathematical Economics  |h [electronic resource] /  |c edited by Shigeo Kusuoka, Akira Yamazaki. 
264 1 |a Tokyo :  |b Springer Japan,  |c 2007. 
300 |a V, 124 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematical Economics ;  |v 10 
505 0 |a Komlós type convergence for random variables and random sets with applications to minimization problems -- Capital-labor substitution and indeterminacy in continuous-time two-sector models -- Weak and strong convergence theorems for new resolvents of maximal monotone operators in Banach spaces -- Golden optimal policy in calculus of variation and dynamic programming -- A remark on law invariant convex risk measures -- Existence and uniqueness of an equilibrium in a model of spatial electoral competition with entry -- Publisher’s Errata Solving long term optimal investment problems with Cox-Ingersoll-Ross interest rates. 
520 |a A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers. Members of the editorial board of this series consists of following prominent economists and mathematicians: Managing Editors: S. Kusuoka (Univ. Tokyo), A. Yamazaki (Hitotsubashi Univ.) - Editors: R. Anderson (U.C.Berkeley), C. Castaing (Univ. Montpellier II), F. H. Clarke (Univ. Lyon I), E. Dierker (Univ. Vienna), D. Duffie (Stanford Univ.), L.C. Evans (U.C. Berkeley), T. Fujimoto (Fukuoka Univ.), J. -M. Grandmont (CREST-CNRS), N. Hirano (Yokohama National Univ.), L. Hurwicz (Univ. of Minnesota), T. Ichiishi (Hitotsubashi Univ.), A. Ioffe (Israel Institute of Technology), S. Iwamoto (Kyushu Univ.), K. Kamiya (Univ. Tokyo), K. Kawamata (Keio Univ.), N. Kikuchi (Keio Univ.), T. Maruyama (Keio Univ.), H. Matano (Univ. Tokyo), K. Nishimura (Kyoto Univ.), M. K. Richter (Univ. Minnesota), Y. Takahashi (Kyoto Univ.), M. Valadier (Univ. Montpellier II), M. Yano (Keio Univ). 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Economic theory. 
650 1 4 |a Economics. 
650 2 4 |a Economic Theory/Quantitative Economics/Mathematical Methods. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Kusuoka, Shigeo.  |e editor. 
700 1 |a Yamazaki, Akira.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9784431727330 
830 0 |a Advances in Mathematical Economics ;  |v 10 
856 4 0 |u http://dx.doi.org/10.1007/978-4-431-72761-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)