Statistical Inference for Discrete Time Stochastic Processes
This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on marti...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
India :
Springer India : Imprint: Springer,
2013.
|
Σειρά: | SpringerBriefs in Statistics,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- CAN Estimators from dependent observations
- Markov chains and their extensions
- Non-Gaussian ARMA models
- Estimating Functions
- Estimation of joint densities and conditional expectation
- Bootstrap and other resampling procedures
- Index.