Non-Linear Feedback Neural Networks VLSI Implementations and Applications /

This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved soluti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ansari, Mohd. Samar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New Delhi : Springer India : Imprint: Springer, 2014.
Σειρά:Studies in Computational Intelligence, 508
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02938nam a22005175i 4500
001 978-81-322-1563-9
003 DE-He213
005 20151103122515.0
007 cr nn 008mamaa
008 130902s2014 ii | s |||| 0|eng d
020 |a 9788132215639  |9 978-81-322-1563-9 
024 7 |a 10.1007/978-81-322-1563-9  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Ansari, Mohd. Samar.  |e author. 
245 1 0 |a Non-Linear Feedback Neural Networks  |h [electronic resource] :  |b VLSI Implementations and Applications /  |c by Mohd. Samar Ansari. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a XXII, 201 p. 79 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 508 
505 0 |a Introduction -- Background -- Voltage-mode Neural Network for the Solution of Linear Equations -- Mixed-mode Neural Circuit for Solving Linear Equations -- Non-Linear Feedback Neural Circuits for Linear and Quadratic Programming -- OTA-based Implementations of Mixed-mode Neural Circuits -- Appendix A: Mixed-mode Neural Network for Graph Colouring -- Appendix B: Mixed-mode Neural Network for Ranking. 
520 |a This book aims to present a viable alternative to the Hopfield Neural Network (HNN) model for analog computation. It is well known that the standard HNN suffers from problems of convergence to local minima, and requirement of a large number of neurons and synaptic weights. Therefore, improved solutions are needed. The non-linear synapse neural network (NoSyNN) is one such possibility and is discussed in detail in this book. This book also discusses the applications in computationally intensive tasks like graph coloring, ranking, and linear as well as quadratic programming. The material in the book is useful to students, researchers and academician working in the area of analog computation. 
650 0 |a Engineering. 
650 0 |a Neural networks (Computer science). 
650 0 |a Computational intelligence. 
650 0 |a Electronics. 
650 0 |a Microelectronics. 
650 0 |a Electronic circuits. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Circuits and Systems. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788132215622 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 508 
856 4 0 |u http://dx.doi.org/10.1007/978-81-322-1563-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)