|
|
|
|
LEADER |
02708nam a22004815i 4500 |
001 |
978-81-322-2092-3 |
003 |
DE-He213 |
005 |
20151204181712.0 |
007 |
cr nn 008mamaa |
008 |
140910s2014 ii | s |||| 0|eng d |
020 |
|
|
|a 9788132220923
|9 978-81-322-2092-3
|
024 |
7 |
|
|a 10.1007/978-81-322-2092-3
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA313
|
072 |
|
7 |
|a PBWR
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.39
|2 23
|
082 |
0 |
4 |
|a 515.48
|2 23
|
100 |
1 |
|
|a Burra, Lakshmi.
|e author.
|
245 |
1 |
0 |
|a Chaotic Dynamics in Nonlinear Theory
|h [electronic resource] /
|c by Lakshmi Burra.
|
264 |
|
1 |
|a New Delhi :
|b Springer India :
|b Imprint: Springer,
|c 2014.
|
300 |
|
|
|a XIX, 104 p. 48 illus., 32 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Chapter 1. Topological Considerations -- Chapter 2. Topological horseshoes and coin-tossing dynamics -- Chapter 3. Chaotic Dynamics in the vertically driven planar pendulum -- Chapter 4. Chaos in a pendulum with variable length.
|
520 |
|
|
|a Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Dynamics.
|
650 |
|
0 |
|a Ergodic theory.
|
650 |
|
0 |
|a Partial differential equations.
|
650 |
|
0 |
|a Statistical physics.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Dynamical Systems and Ergodic Theory.
|
650 |
2 |
4 |
|a Partial Differential Equations.
|
650 |
2 |
4 |
|a Nonlinear Dynamics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9788132220916
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-81-322-2092-3
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|