Real Analysis on Intervals

The book targets undergraduate and postgraduate mathematics students and helps them develop a deep understanding of mathematical analysis. Designed as a first course in real analysis, it helps students learn how abstract mathematical analysis solves mathematical problems that relate to the real worl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Choudary, A. D. R. (Συγγραφέας), Niculescu, Constantin P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New Delhi : Springer India : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03462nam a22004815i 4500
001 978-81-322-2148-7
003 DE-He213
005 20151204171851.0
007 cr nn 008mamaa
008 141120s2014 ii | s |||| 0|eng d
020 |a 9788132221487  |9 978-81-322-2148-7 
024 7 |a 10.1007/978-81-322-2148-7  |2 doi 
040 |d GrThAP 
050 4 |a QA431 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.45  |2 23 
100 1 |a Choudary, A. D. R.  |e author. 
245 1 0 |a Real Analysis on Intervals  |h [electronic resource] /  |c by A. D. R. Choudary, Constantin P. Niculescu. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 525 p. 36 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Chapter 1. The Real Numbers -- Chapter 2. Limits of Real Sequences -- Chapter 3. The Euclidean Spaces RP and C -- Chapter 4. Numerical Series -- Chapter 5. Metric and Topology -- Chapter 6. Continuous Functions -- Chapter 7. Elementary Functions -- Chapter 8. Differential Calculus on R -- Chapter 9. The Riemann Integral -- Chapter 10. Improper Riemann Integrals -- Chapter 11. The Theory of Lebesgue Integral -- Chapter 12. Fourier Series -- Appendices. 
520 |a The book targets undergraduate and postgraduate mathematics students and helps them develop a deep understanding of mathematical analysis. Designed as a first course in real analysis, it helps students learn how abstract mathematical analysis solves mathematical problems that relate to the real world. As well as providing a valuable source of inspiration for contemporary research in mathematics, the book helps students read, understand and construct mathematical proofs, develop their problem-solving abilities and comprehend the importance and frontiers of computer facilities and much more. It offers comprehensive material for both seminars and independent study for readers with a basic knowledge of calculus and linear algebra. The first nine chapters followed by the appendix on the Stieltjes integral are recommended for graduate students studying probability and statistics, while the first eight chapters followed by the appendix on dynamical systems will be of use to students of biology and environmental sciences. Chapter 10 and the appendixes are of interest to those pursuing further studies at specialized advanced levels. Exercises at the end of each section, as well as commentaries at the end of each chapter, further aid readers’ understanding. The ultimate goal of the book is to raise awareness of the fine architecture of analysis and its relationship with the other fields of mathematics. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Integral equations. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 1 4 |a Mathematics. 
650 2 4 |a Integral Equations. 
650 2 4 |a Integral Transforms, Operational Calculus. 
650 2 4 |a Fourier Analysis. 
700 1 |a Niculescu, Constantin P.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788132221470 
856 4 0 |u http://dx.doi.org/10.1007/978-81-322-2148-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)