Computational Intelligence in Data Mining - Volume 1 Proceedings of the International Conference on CIDM, 20-21 December 2014 /

The contributed volume aims to explicate and address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datase...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Jain, Lakhmi C. (Επιμελητής έκδοσης), Behera, Himansu Sekhar (Επιμελητής έκδοσης), Mandal, Jyotsna Kumar (Επιμελητής έκδοσης), Mohapatra, Durga Prasad (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New Delhi : Springer India : Imprint: Springer, 2015.
Σειρά:Smart Innovation, Systems and Technologies, 31
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Περιγραφή
Περίληψη:The contributed volume aims to explicate and address the difficulties and challenges for the seamless integration of two core disciplines of computer science, i.e., computational intelligence and data mining. Data Mining aims at the automatic discovery of underlying non-trivial knowledge from datasets by applying intelligent analysis techniques. The interest in this research area has experienced a considerable growth in the last years due to two key factors: (a) knowledge hidden in organizations’ databases can be exploited to improve strategic and managerial decision-making; (b) the large volume of data managed by organizations makes it impossible to carry out a manual analysis. The book addresses different methods and techniques of integration for enhancing the overall goal of data mining. The book helps to disseminate the knowledge about some innovative, active research directions in the field of data mining, machine and computational intelligence, along with some current issues and applications of related topics.
Φυσική περιγραφή:XXVIII, 713 p. 327 illus. online resource.
ISBN:9788132222057
ISSN:2190-3018 ;