Hyperspherical Harmonics Expansion Techniques Application to Problems in Physics /

The book provides a generalized theoretical technique for solving the fewbody Schrödinger equation. Straight forward approaches to solve it in terms of position vectors of constituent particles and using standard mathematical techniques become too cumbersome and inconvenient when the system contains...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Das, Tapan Kumar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New Delhi : Springer India : Imprint: Springer, 2016.
Έκδοση:1st ed. 2016.
Σειρά:Theoretical and Mathematical Physics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03527nam a22005175i 4500
001 978-81-322-2361-0
003 DE-He213
005 20151126101843.0
007 cr nn 008mamaa
008 151126s2016 ii | s |||| 0|eng d
020 |a 9788132223610  |9 978-81-322-2361-0 
024 7 |a 10.1007/978-81-322-2361-0  |2 doi 
040 |d GrThAP 
050 4 |a QC1-999 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Das, Tapan Kumar.  |e author. 
245 1 0 |a Hyperspherical Harmonics Expansion Techniques  |h [electronic resource] :  |b Application to Problems in Physics /  |c by Tapan Kumar Das. 
250 |a 1st ed. 2016. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 159 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical and Mathematical Physics,  |x 1864-5879 
505 0 |a Introduction -- Systems of One or More Particles -- Three-body System -- General Many-body Systems.- The Trinucleon System -- Application to Coulomb Systems -- Potential Harmonics -- Application to Bose-Einstein Condensates -- Integro-differential Equation -- Computational Techniques. 
520 |a The book provides a generalized theoretical technique for solving the fewbody Schrödinger equation. Straight forward approaches to solve it in terms of position vectors of constituent particles and using standard mathematical techniques become too cumbersome and inconvenient when the system contains more than two particles. The introduction of Jacobi vectors, hyperspherical variables and hyperspherical harmonics as an expansion basis is an elegant way to tackle systematically the problem of an increasing number of interacting particles. Analytic expressions for hyperspherical harmonics, appropriate symmetrisation of the wave function under exchange of identical particles and calculation of matrix elements of the interaction have been presented. Applications of this technique to various problems of physics have been discussed. In spite of straight forward generalization of the mathematical tools for increasing number of particles, the method becomes computationally difficult for more than a few particles. Hence various approximation methods have also been discussed. Chapters on the potential harmonics and its application to Bose-Einstein condensates (BEC) have been included to tackle dilute system of a large number of particles. A chapter on special numerical algorithms has also been provided. This monograph is a reference material for theoretical research in the few-body problems for research workers starting from advanced graduate level students to senior scientists. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 0 |a Nuclear physics. 
650 0 |a Heavy ions. 
650 0 |a Hadrons. 
650 1 4 |a Physics. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Nuclear Physics, Heavy Ions, Hadrons. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Mathematical Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788132223603 
830 0 |a Theoretical and Mathematical Physics,  |x 1864-5879 
856 4 0 |u http://dx.doi.org/10.1007/978-81-322-2361-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)