Optimal Covariate Designs Theory and Applications /

This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Das, Premadhis (Συγγραφέας), Dutta, Ganesh (Συγγραφέας), Mandal, Nripes Kumar (Συγγραφέας), Sinha, Bikas Kumar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: New Delhi : Springer India : Imprint: Springer, 2015.
Έκδοση:1st ed. 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03471nam a22004815i 4500
001 978-81-322-2461-7
003 DE-He213
005 20151204173009.0
007 cr nn 008mamaa
008 150723s2015 ii | s |||| 0|eng d
020 |a 9788132224617  |9 978-81-322-2461-7 
024 7 |a 10.1007/978-81-322-2461-7  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Das, Premadhis.  |e author. 
245 1 0 |a Optimal Covariate Designs  |h [electronic resource] :  |b Theory and Applications /  |c by Premadhis Das, Ganesh Dutta, Nripes Kumar Mandal, Bikas Kumar Sinha. 
250 |a 1st ed. 2015. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2015. 
300 |a XVII, 221 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Optimal Covariate Designs: Scope of the Monograph -- Chapter 2. OCDs in Completely Randomized Design Set-Up -- Chapter 3. OCDs in Randomized Block Design Set-Up -- Chapter 4. OCDs in Balanced Incomplete Block Design Set-Up -- Chapter 5. OCDs in Group Divisible Design Set-Up -- Chapter 6. OCDs in Binary Proper Equireplicate Block Design Set-Up -- Chapter 7. OCDs in Balanced Treatment Incomplete Block Design Set-Up -- Chapter 8. Miscellaneous other Topics and Issues -- Chapter 9. Applications of the Theory of OCDs. 
520 |a This book primarily addresses the optimality aspects of covariate designs. A covariate model is a combination of ANOVA and regression models. Optimal estimation of the parameters of the model using a suitable choice of designs is of great importance; as such choices allow experimenters to extract maximum information for the unknown model parameters. The main emphasis of this monograph is to start with an assumed covariate model in combination with some standard ANOVA set-ups such as CRD, RBD, BIBD, GDD, BTIBD, BPEBD, cross-over, multi-factor, split-plot and strip-plot designs, treatment control designs, etc. and discuss the nature and availability of optimal covariate designs. In some situations, optimal estimations of both ANOVA and the regression parameters are provided. Global optimality and D-optimality criteria are mainly used in selecting the design. The standard optimality results of both discrete and continuous set-ups have been adapted, and several novel combinatorial techniques have been applied for the construction of optimum designs using Hadamard matrices, the Kronecker product, Rao-Khatri product, mixed orthogonal arrays to name a few. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
700 1 |a Dutta, Ganesh.  |e author. 
700 1 |a Mandal, Nripes Kumar.  |e author. 
700 1 |a Sinha, Bikas Kumar.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788132224600 
856 4 0 |u http://dx.doi.org/10.1007/978-81-322-2461-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)