Quantum Isometry Groups

This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommuta...

Full description

Bibliographic Details
Main Authors: Goswami, Debashish (Author), Bhowmick, Jyotishman (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: New Delhi : Springer India : Imprint: Springer, 2016.
Series:Infosys Science Foundation Series,
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 03653nam a22005535i 4500
001 978-81-322-3667-2
003 DE-He213
005 20170105162054.0
007 cr nn 008mamaa
008 170105s2016 ii | s |||| 0|eng d
020 |a 9788132236672  |9 978-81-322-3667-2 
024 7 |a 10.1007/978-81-322-3667-2  |2 doi 
040 |d GrThAP 
050 4 |a QA614-614.97 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 514.74  |2 23 
100 1 |a Goswami, Debashish.  |e author. 
245 1 0 |a Quantum Isometry Groups  |h [electronic resource] /  |c by Debashish Goswami, Jyotishman Bhowmick. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2016. 
300 |a XXVIII, 235 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Infosys Science Foundation Series,  |x 2363-6149 
505 0 |a Chapter 1. Introduction -- Chapter 2. Preliminaries -- Chapter 3. Classical and Noncommutative Geometry -- Chapter 4. Definition and Existence of Quantum Isometry Groups -- Chapter 5. Quantum Isometry Groups of Classical and Quantum -- Chapter 6. Quantum Isometry Groups of Discrete Quantum Spaces -- Chapter 7. Nonexistence of Genuine Smooth CQG Actions on Classical Connected Manifolds -- Chapter 8. Deformation of Spectral Triples and Their Quantum Isometry Groups -- Chapter 9. More Examples and Computations -- Chapter 10. Spectral Triples and Quantum Isometry Groups on Group C*-Algebras. 
520 |a This book offers an up-to-date overview of the recently proposed theory of quantum isometry groups. Written by the founders, it is the first book to present the research on the “quantum isometry group”, highlighting the interaction of noncommutative geometry and quantum groups, which is a noncommutative generalization of the notion of group of isometry of a classical Riemannian manifold. The motivation for this generalization is the importance of isometry groups in both mathematics and physics. The framework consists of Alain Connes’ “noncommutative geometry” and the operator-algebraic theory of “quantum groups”. The authors prove the existence of quantum isometry group for noncommutative manifolds given by spectral triples under mild conditions and discuss a number of methods for computing them. One of the most striking and profound findings is the non-existence of non-classical quantum isometry groups for arbitrary classical connected compact manifolds and, by using this, the authors explicitly describe quantum isometry groups of most of the noncommutative manifolds studied in the literature. Some physical motivations and possible applications are also discussed. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Mathematical physics. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Quantum Physics. 
700 1 |a Bhowmick, Jyotishman.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788132236658 
830 0 |a Infosys Science Foundation Series,  |x 2363-6149 
856 4 0 |u http://dx.doi.org/10.1007/978-81-322-3667-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)