Wiener Chaos: Moments, Cumulants and Diagrams A survey with computer implementation /

The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differ...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Peccati, Giovanni (Συγγραφέας), Taqqu, Murad S. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Milano : Springer Milan, 2011.
Σειρά:Bocconi & Springer Series, 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02866nam a22005295i 4500
001 978-88-470-1679-8
003 DE-He213
005 20151204145625.0
007 cr nn 008mamaa
008 110406s2011 it | s |||| 0|eng d
020 |a 9788847016798  |9 978-88-470-1679-8 
024 7 |a 10.1007/978-88-470-1679-8  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Peccati, Giovanni.  |e author. 
245 1 0 |a Wiener Chaos: Moments, Cumulants and Diagrams  |h [electronic resource] :  |b A survey with computer implementation /  |c by Giovanni Peccati, Murad S. Taqqu. 
264 1 |a Milano :  |b Springer Milan,  |c 2011. 
300 |a XIII, 274 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Bocconi & Springer Series,  |x 2039-1471 ;  |v 1 
520 |a The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae. 
650 0 |a Mathematics. 
650 0 |a Measure theory. 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Combinatorics. 
650 2 4 |a Measure and Integration. 
700 1 |a Taqqu, Murad S.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847016781 
830 0 |a Bocconi & Springer Series,  |x 2039-1471 ;  |v 1 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-1679-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)