Peacocks and Associated Martingales, with Explicit Constructions

We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Hirsch, Francis (Συγγραφέας), Profeta, Christophe (Συγγραφέας), Roynette, Bernard (Συγγραφέας), Yor, Marc (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Milano : Springer Milan, 2011.
Σειρά:B&SS — Bocconi & Springer Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02673nam a22005175i 4500
001 978-88-470-1908-9
003 DE-He213
005 20151204181904.0
007 cr nn 008mamaa
008 110723s2011 it | s |||| 0|eng d
020 |a 9788847019089  |9 978-88-470-1908-9 
024 7 |a 10.1007/978-88-470-1908-9  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Hirsch, Francis.  |e author. 
245 1 0 |a Peacocks and Associated Martingales, with Explicit Constructions  |h [electronic resource] /  |c by Francis Hirsch, Christophe Profeta, Bernard Roynette, Marc Yor. 
264 1 |a Milano :  |b Springer Milan,  |c 2011. 
300 |a XXXII, 388 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a B&SS — Bocconi & Springer Series,  |x 2039-1471 
505 0 |a Some Examples of Peacocks -- The Sheet Method -- The Time Reversal Method -- The Time Inversion Method -- The Sato Process Method -- The Stochastic Differential Equation Method -- The Skorokhod Embedding (SE) Method. Comparison of Multidimensional Marginals. 
520 |a We call peacock an integrable process which is increasing in the convex order; such a notion plays an important role in Mathematical Finance. A deep theorem due to Kellerer states that a process is a peacock if and only if it has the same one-dimensional marginals as a martingale. Such a martingale is then said to be associated to this peacock. In this monograph, we exhibit numerous examples of peacocks and associated martingales with the help of different methods: construction of sheets, time reversal, time inversion, self-decomposability, SDE, Skorokhod embeddings… They are developed in eight chapters, with about a hundred of exercises. 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantitative Finance. 
700 1 |a Profeta, Christophe.  |e author. 
700 1 |a Roynette, Bernard.  |e author. 
700 1 |a Yor, Marc.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847019072 
830 0 |a B&SS — Bocconi & Springer Series,  |x 2039-1471 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-1908-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)