Geometria Differenziale

L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Abate, Marco (Συγγραφέας), Tovena, Francesca (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:Italian
Έκδοση: Milano : Springer Milan : Imprint: Springer, 2011.
Σειρά:UNITEXT,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02928nam a22004575i 4500
001 978-88-470-1920-1
003 DE-He213
005 20151204175538.0
007 cr nn 008mamaa
008 111123s2011 it | s |||| 0|ita d
020 |a 9788847019201  |9 978-88-470-1920-1 
024 7 |a 10.1007/978-88-470-1920-1  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Abate, Marco.  |e author. 
245 1 0 |a Geometria Differenziale  |h [electronic resource] /  |c by Marco Abate, Francesca Tovena. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2011. 
300 |a XIII, 472 pagg.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 
520 |a L'opera fornisce una introduzione alla geometria delle varietà differenziabili, illustrandone le principali proprietà e descrivendo le principali tecniche e i più importanti strumenti usati per il loro studio. Uno degli obiettivi primari dell'opera è di fungere da testo di riferimento per chi (matematici, fisici, ingegneri) usa la geometria differenziale come strumento; inoltre può essere usato come libro di testo per diversi corsi introduttivi alla geometria differenziale, concentrandosi su alcuni dei vari aspetti della teoria presentati nell'opera. Più in dettaglio, nell'opera saranno trattati i seguenti argomenti: richiami di algebra multilineare e tensoriale, spesso non presentati nei corsi standard di algebra lineare; varietà differenziali, incluso il teorema di Whitney; fibrati vettoriali, incluso il teorema di Frobenius e un'introduzione ai fibrati principali; gruppi di Lie, incluso il teorema di corrispondenza fra sottogruppi e sottoalgebre; coomologia di de Rham, inclusa la dualità di Poincaré e il teorema di de Rham; connessioni, inclusa la teoria delle geodetiche; e geometria Riemanniana, con particolare attenzione agli operatori di curvatura e inclusi teoremi di Cartan-Hadamard, Bonnet-Myers, e Synge-Weinstein. Come abitudine degli autori, il testo è scritto in modo da favorire una lettura attiva, cruciale per un buon apprendimento di argomenti matematici; inoltre è corredato da numerosi esempi svolti ed esercizi proposti. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Geometry. 
700 1 |a Tovena, Francesca.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847019195 
830 0 |a UNITEXT,  |x 2038-5714 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-1920-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)