Curves and Surfaces

The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of paramet...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Abate, Marco (Συγγραφέας), Tovena, Francesca (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Milano : Springer Milan : Imprint: Springer, 2012.
Σειρά:UNITEXT,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04080nam a22005175i 4500
001 978-88-470-1941-6
003 DE-He213
005 20151204174026.0
007 cr nn 008mamaa
008 120611s2012 it | s |||| 0|eng d
020 |a 9788847019416  |9 978-88-470-1941-6 
024 7 |a 10.1007/978-88-470-1941-6  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Abate, Marco.  |e author. 
245 1 0 |a Curves and Surfaces  |h [electronic resource] /  |c by Marco Abate, Francesca Tovena. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2012. 
300 |a XIII, 396 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 
520 |a The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3. 
650 0 |a Mathematics. 
650 0 |a Computer graphics. 
650 0 |a Computer mathematics. 
650 0 |a Geometry. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Geometry. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Tovena, Francesca.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847019409 
830 0 |a UNITEXT,  |x 2038-5714 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-1941-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)