Algebra for Symbolic Computation

This book deals with several topics in algebra useful for computer science applications and the symbolic treatment of algebraic problems, pointing out and discussing their algorithmic nature. The topics covered range from classical results such as the Euclidean algorithm, the Chinese remainder theor...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Machì, Antonio (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Milano : Springer Milan : Imprint: Springer, 2012.
Σειρά:UNITEXT,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02167nam a22004335i 4500
001 978-88-470-2397-0
003 DE-He213
005 20130726165151.0
007 cr nn 008mamaa
008 120710s2012 it | s |||| 0|eng d
020 |a 9788847023970  |9 978-88-470-2397-0 
024 7 |a 10.1007/978-88-470-2397-0  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Machì, Antonio.  |e author. 
245 1 0 |a Algebra for Symbolic Computation  |h [electronic resource] /  |c by Antonio Machì. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 180 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 
505 0 |a The Euclidean algorithm, the Chinese remainder theorem and interpolation -- p-adic series expansion -- The resultant -- Factorisation of polynomials -- The discrete Fourier transform. 
520 |a This book deals with several topics in algebra useful for computer science applications and the symbolic treatment of algebraic problems, pointing out and discussing their algorithmic nature. The topics covered range from classical results such as the Euclidean algorithm, the Chinese remainder theorem, and polynomial interpolation, to p-adic expansions of rational and algebraic numbers and rational functions, to reach the problem of the polynomial factorisation,  especially via Berlekamp’s method, and the discrete Fourier transform. Basic algebra concepts are revised in a form suited for implementation on a computer algebra system. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847023963 
830 0 |a UNITEXT,  |x 2038-5714 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-2397-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)