Groups An Introduction to Ideas and Methods of the Theory of Groups /

Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder’s program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Machì, Antonio (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Milano : Springer Milan : Imprint: Springer, 2012.
Σειρά:UNITEXT,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02719nam a22004935i 4500
001 978-88-470-2421-2
003 DE-He213
005 20151204152126.0
007 cr nn 008mamaa
008 120405s2012 it | s |||| 0|eng d
020 |a 9788847024212  |9 978-88-470-2421-2 
024 7 |a 10.1007/978-88-470-2421-2  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Machì, Antonio.  |e author. 
245 1 0 |a Groups  |h [electronic resource] :  |b An Introduction to Ideas and Methods of the Theory of Groups /  |c by Antonio Machì. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2012. 
300 |a XIII, 371 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a UNITEXT,  |x 2038-5714 
505 0 |a Normal Subgroups, Conjugation and Isomorphism Theorems -- Group Actions and Permutation Groups -- Generators and Relations -- Nilpotent Groups and Solvable Groups -- Representations -- Extensions and Cohomology -- Solution to the exercises. 
520 |a Groups are a means of classification, via the group action on a set, but also the object of a classification. How many groups of a given type are there, and how can they be described? Hölder’s program for attacking this problem in the case of finite groups is a sort of leitmotiv throughout the text. Infinite groups are also considered, with particular attention to logical and decision problems. Abelian, nilpotent and solvable groups are studied both in the finite and infinite case. Permutation groups and are treated in detail; their relationship with Galois theory is often taken into account. The last two chapters deal with the representation theory of finite group and the cohomology theory of groups; the latter with special emphasis on the extension problem. The sections are followed by exercises; hints to the solution are given, and for most of them a complete solution is provided. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Commutative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847024205 
830 0 |a UNITEXT,  |x 2038-5714 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-2421-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)