Selected Aspects of Fractional Brownian Motion

Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory pr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nourdin, Ivan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Milano : Springer Milan : Imprint: Springer, 2012.
Σειρά:B&SS — Bocconi & Springer Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03180nam a22004815i 4500
001 978-88-470-2823-4
003 DE-He213
005 20151030111356.0
007 cr nn 008mamaa
008 130125s2012 it | s |||| 0|eng d
020 |a 9788847028234  |9 978-88-470-2823-4 
024 7 |a 10.1007/978-88-470-2823-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Nourdin, Ivan.  |e author. 
245 1 0 |a Selected Aspects of Fractional Brownian Motion  |h [electronic resource] /  |c by Ivan Nourdin. 
264 1 |a Milano :  |b Springer Milan :  |b Imprint: Springer,  |c 2012. 
300 |a X, 122 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a B&SS — Bocconi & Springer Series,  |x 2039-1471 
505 0 |a 1. Preliminaries -- 2. Fractional Brownian motion -- 3. Integration with respect to fractional Brownian motion -- 4. Supremum of the fractional Brownian motion -- 5. Malliavin calculus in a nutshell -- 6. Central limit theorem on the Wiener space -- 7. Weak convergence of partial sums of stationary sequences -- 8. Non-commutative fractional Brownian motion. 
520 |a Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory property which is in sharp contrast with martingales and Markov processes. FBm has become a popular choice for applications where classical processes cannot model these non-trivial properties; for instance long memory, which is also known as persistence, is of fundamental importance for financial data and in internet traffic. The mathematical theory of fBm is currently being developed vigorously by a number of stochastic analysts, in various directions, using complementary and sometimes competing tools. This book is concerned with several aspects of fBm, including the stochastic integration with respect to it, the study of its supremum and its appearance as limit of partial sums involving stationary sequences, to name but a few. The book is addressed to researchers and graduate students in probability and mathematical statistics. With very few exceptions (where precise references are given), every stated result is proved. 
650 0 |a Mathematics. 
650 0 |a Economics, Mathematical. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Quantitative Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788847028227 
830 0 |a B&SS — Bocconi & Springer Series,  |x 2039-1471 
856 4 0 |u http://dx.doi.org/10.1007/978-88-470-2823-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)