Structured Matrix Based Methods for Approximate Polynomial GCD

Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the poly...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Boito, Paola (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Pisa : Edizioni della Normale, 2011.
Σειρά:Tesi/Theses ; 15
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02588nam a22004335i 4500
001 978-88-7642-381-9
003 DE-He213
005 20150520195906.0
007 cr nn 008mamaa
008 120116s2011 it | s |||| 0|eng d
020 |a 9788876423819  |9 978-88-7642-381-9 
024 7 |a 10.1007/978-88-7642-381-9  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Boito, Paola.  |e author. 
245 1 0 |a Structured Matrix Based Methods for Approximate Polynomial GCD  |h [electronic resource] /  |c by Paola Boito. 
264 1 |a Pisa :  |b Edizioni della Normale,  |c 2011. 
300 |a 250p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Tesi/Theses ;  |v 15 
505 0 |a i. Introduction -- ii. Notation -- 1. Approximate polynomial GCD -- 2. Structured and resultant matrices -- 3. The Euclidean algorithm -- 4. Matrix factorization and approximate GCDs -- 5. Optimization approach -- 6. New factorization-based methods -- 7. A fast GCD algorithm -- 8. Numerical tests -- 9. Generalizations and further work -- 10. Appendix A: Distances and norms -- 11. Appendix B: Special matrices -- 12. Bibliography -- 13. Index. 
520 |a Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the polynomial GCD problem can be expressed in matrix form: the second part of the book focuses on this point of view and analyses the structure of the relevant matrices, such as Toeplitz, Toepliz-block and displacement structures. New algorithms for the computation of approximate polynomial GCD are presented, along with extensive numerical tests. The use of matrix structure allows, in particular, to lower the asymptotic computational cost from cubic to quadratic order with respect to polynomial degree. . 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788876423802 
830 0 |a Tesi/Theses ;  |v 15 
856 4 0 |u http://dx.doi.org/10.1007/978-88-7642-381-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)