Structured Matrix Based Methods for Approximate Polynomial GCD
Defining and computing a greatest common divisor of two polynomials with inexact coefficients is a classical problem in symbolic-numeric computation. The first part of this book reviews the main results that have been proposed so far in the literature. As usual with polynomial computations, the poly...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Pisa :
Edizioni della Normale,
2011.
|
Σειρά: | Tesi/Theses ;
15 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- i. Introduction
- ii. Notation
- 1. Approximate polynomial GCD
- 2. Structured and resultant matrices
- 3. The Euclidean algorithm
- 4. Matrix factorization and approximate GCDs
- 5. Optimization approach
- 6. New factorization-based methods
- 7. A fast GCD algorithm
- 8. Numerical tests
- 9. Generalizations and further work
- 10. Appendix A: Distances and norms
- 11. Appendix B: Special matrices
- 12. Bibliography
- 13. Index.