Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations

The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are descri...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Bellettini, Giovanni (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2013.
Σειρά:Publications of the Scuola Normale Superiore ; 12
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03035nam a22004335i 4500
001 978-88-7642-429-8
003 DE-He213
005 20140513050045.0
007 cr nn 008mamaa
008 140513s2013 it | s |||| 0|eng d
020 |a 9788876424298  |9 978-88-7642-429-8 
024 7 |a 10.1007/978-88-7642-429-8  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Bellettini, Giovanni.  |e author. 
245 1 0 |a Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations  |h [electronic resource] /  |c by Giovanni Bellettini. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2013. 
300 |a Approx. 350 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Publications of the Scuola Normale Superiore ;  |v 12 
505 0 |a Signed distance from a smooth boundary -- Mean curvature vector and second fundamental form -- First variations of volume integrals and of the perimeter -- Smooth mean curvature flows -- Huisken’s monotonicity formula -- Inclusion principle. Local well posedness: the approach of Evans–Spruck -- Grayson’s example -- De Giorgi’s barriers -- Inner and outer regularizations -- An example of fattening -- Ilmanen’s interposition lemma -- The avoidance principle -- Comparison between barriers and a generalized evolution -- Barriers and level set evolution -- Parabolic singular perturbations: formal matched asymptotics, convergence and error estimate. 
520 |a The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788876424281 
830 0 |a Publications of the Scuola Normale Superiore ;  |v 12 
856 4 0 |u http://dx.doi.org/10.1007/978-88-7642-429-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)