Regularity of Optimal Transport Maps and Applications

In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Philippis, Guido De (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2013.
Σειρά:Publications of the Scuola Normale Superiore ; 17
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02541nam a22004695i 4500
001 978-88-7642-458-8
003 DE-He213
005 20151204183226.0
007 cr nn 008mamaa
008 130727s2013 it | s |||| 0|eng d
020 |a 9788876424588  |9 978-88-7642-458-8 
024 7 |a 10.1007/978-88-7642-458-8  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Philippis, Guido De.  |e author. 
245 1 0 |a Regularity of Optimal Transport Maps and Applications  |h [electronic resource] /  |c by Guido De Philippis. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2013. 
300 |a Approx. 190 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Publications of the Scuola Normale Superiore ;  |v 17 
520 |a In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero. 
650 0 |a Mathematics. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788876424564 
830 0 |a Publications of the Scuola Normale Superiore ;  |v 17 
856 4 0 |u http://dx.doi.org/10.1007/978-88-7642-458-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)