Existence and Regularity Results for Some Shape Optimization Problems

We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Velichkov, Bozhidar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2015.
Σειρά:Publications of the Scuola Normale Superiore ; 19
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02396nam a22004695i 4500
001 978-88-7642-527-1
003 DE-He213
005 20151123193420.0
007 cr nn 008mamaa
008 150321s2015 it | s |||| 0|eng d
020 |a 9788876425271  |9 978-88-7642-527-1 
024 7 |a 10.1007/978-88-7642-527-1  |2 doi 
040 |d GrThAP 
050 4 |a QA315-316 
050 4 |a QA402.3 
050 4 |a QA402.5-QA402.6 
072 7 |a PBKQ  |2 bicssc 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT005000  |2 bisacsh 
072 7 |a MAT029020  |2 bisacsh 
082 0 4 |a 515.64  |2 23 
100 1 |a Velichkov, Bozhidar.  |e author. 
245 1 0 |a Existence and Regularity Results for Some Shape Optimization Problems  |h [electronic resource] /  |c by Bozhidar Velichkov. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2015. 
300 |a XVI, 349 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Publications of the Scuola Normale Superiore ;  |v 19 
520 |a We study the existence and regularity of optimal domains for functionals depending on the spectrum of the Dirichlet Laplacian or of more general Schrödinger operators. The domains are subject to perimeter and volume constraints; we also take into account the possible presence of geometric obstacles. We investigate the properties of the optimal sets and of the optimal state functions. In particular, we prove that the eigenfunctions are Lipschitz continuous up to the boundary and that the optimal sets subject to the perimeter constraint have regular free boundary. We also consider spectral optimization problems in non-Euclidean settings and optimization problems for potentials and measures, as well as multiphase and optimal partition problems. . 
650 0 |a Mathematics. 
650 0 |a Calculus of variations. 
650 1 4 |a Mathematics. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788876425264 
830 0 |a Publications of the Scuola Normale Superiore ;  |v 19 
856 4 0 |u http://dx.doi.org/10.1007/978-88-7642-527-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)