Rigid Germs, the Valuative Tree, and Applications to Kato Varieties

This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical poin...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ruggiero, Matteo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Pisa : Scuola Normale Superiore : Imprint: Edizioni della Normale, 2015.
Σειρά:Publications of the Scuola Normale Superiore ; 20
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02721nam a22005055i 4500
001 978-88-7642-559-2
003 DE-He213
005 20160428003042.0
007 cr nn 008mamaa
008 160428s2015 it | s |||| 0|eng d
020 |a 9788876425592  |9 978-88-7642-559-2 
024 7 |a 10.1007/978-88-7642-559-2  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Ruggiero, Matteo.  |e author. 
245 1 0 |a Rigid Germs, the Valuative Tree, and Applications to Kato Varieties  |h [electronic resource] /  |c by Matteo Ruggiero. 
264 1 |a Pisa :  |b Scuola Normale Superiore :  |b Imprint: Edizioni della Normale,  |c 2015. 
300 |a Approx. 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Publications of the Scuola Normale Superiore ;  |v 20 
505 0 |a Introduction.-1.Background -- 2.Dynamics in 2D -- 3.Rigid germs in higher dimension -- 4 Construction of non-Kahler 3-folds -- References -- Index. 
520 |a This thesis deals with specific features of the theory of holomorphic dynamics in dimension 2 and then sets out to study analogous questions in higher dimensions, e.g. dealing with normal forms for rigid germs, and examples of Kato 3-folds. The local dynamics of holomorphic maps around critical points is still not completely understood, in dimension 2 or higher, due to the richness of the geometry of the critical set for all iterates. In dimension 2, the study of the dynamics induced on a suitable functional space (the valuative tree) allows a classification of such maps up to birational conjugacy, reducing the problem to the special class of rigid germs, where the geometry of the critical set is simple. In some cases, from such dynamical data one can construct special compact complex surfaces, called Kato surfaces, related to some conjectures in complex geometry. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788876425585 
830 0 |a Publications of the Scuola Normale Superiore ;  |v 20 
856 4 0 |u http://dx.doi.org/10.1007/978-88-7642-559-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)