Implementing Spectral Methods for Partial Differential Equations Algorithms for Scientists and Engineers /

This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Kopriva, David A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2009.
Σειρά:Scientific Computation,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03545nam a22005655i 4500
001 978-90-481-2261-5
003 DE-He213
005 20151204185537.0
007 cr nn 008mamaa
008 100301s2009 ne | s |||| 0|eng d
020 |a 9789048122615  |9 978-90-481-2261-5 
024 7 |a 10.1007/978-90-481-2261-5  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Kopriva, David A.  |e author. 
245 1 0 |a Implementing Spectral Methods for Partial Differential Equations  |h [electronic resource] :  |b Algorithms for Scientists and Engineers /  |c by David A. Kopriva. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2009. 
300 |a XVIII, 397 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Scientific Computation,  |x 1434-8322 
505 0 |a Approximating Functions, Derivatives and Integrals -- Spectral Approximation -- Algorithms for Periodic Functions -- Algorithms for Non-Periodic Functions -- Approximating Solutions of PDEs -- Survey of Spectral Approximations -- Spectral Approximation on the Square -- Transformation Methods from Square to Non-Square Geometries -- Spectral Methods in Non-Square Geometries -- Spectral Element Methods -- Erratum -- Erratum. 
520 |a This book offers a systematic and self-contained approach to solve partial differential equations numerically using single and multidomain spectral methods. It contains detailed algorithms in pseudocode for the application of spectral approximations to both one and two dimensional PDEs of mathematical physics describing potentials, transport, and wave propagation. David Kopriva, a well-known researcher in the field with extensive practical experience, shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries. The book addresses computational and applications scientists, as it emphasizes the practical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectral approximation and the basic algorithms, including FFT algorithms, Gauss quadrature algorithms, and how to approximate derivatives. The second part shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at the end of each chapter encourage the reader to experiment with the algorithms. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Analysis. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Numerical and Computational Physics. 
650 2 4 |a Numeric Computing. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048122608 
830 0 |a Scientific Computation,  |x 1434-8322 
856 4 0 |u http://dx.doi.org/10.1007/978-90-481-2261-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)