A Guide to Empirical Orthogonal Functions for Climate Data Analysis

Climatology and meteorology have basically been a descriptive science until it became possible to use numerical models, but it is crucial to the success of the strategy that the model must be a good representation of the real climate system of the Earth. Models are required to reproduce not only the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Navarra, Antonio (Συγγραφέας), Simoncini, Valeria (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03455nam a22005415i 4500
001 978-90-481-3702-2
003 DE-He213
005 20151204150455.0
007 cr nn 008mamaa
008 100427s2010 ne | s |||| 0|eng d
020 |a 9789048137022  |9 978-90-481-3702-2 
024 7 |a 10.1007/978-90-481-3702-2  |2 doi 
040 |d GrThAP 
050 4 |a QC851-999 
072 7 |a RB  |2 bicssc 
072 7 |a SCI042000  |2 bisacsh 
082 0 4 |a 551.5  |2 23 
100 1 |a Navarra, Antonio.  |e author. 
245 1 2 |a A Guide to Empirical Orthogonal Functions for Climate Data Analysis  |h [electronic resource] /  |c by Antonio Navarra, Valeria Simoncini. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2010. 
300 |a VI, 151 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Elements of Linear Algebra -- Basic Statistical Concepts -- Empirical Orthogonal Functions -- Generalizations: Rotated, Complex, Extended and Combined EOF -- Cross-Covariance and the Singular Value Decomposition -- The Canonical Correlation Analysis -- Multiple Linear Regression Methods. 
520 |a Climatology and meteorology have basically been a descriptive science until it became possible to use numerical models, but it is crucial to the success of the strategy that the model must be a good representation of the real climate system of the Earth. Models are required to reproduce not only the mean properties of climate, but also its variability and the strong spatial relations between climate variability in geographically diverse regions. Quantitative techniques were developed to explore the climate variability and its relations between different geographical locations. Methods were borrowed from descriptive statistics, where they were developed to analyze variance of related observations-variable pairs, or to identify unknown relations between variables. A Guide to Empirical Orthogonal Functions for Climate Data Analysis uses a different approach, trying to introduce the reader to a practical application of the methods, including data sets from climate simulations and MATLAB codes for the algorithms. All pictures and examples used in the book may be reproduced by using the data sets and the routines available in the book . Though the main thrust of the book is for climatological examples, the treatment is sufficiently general that the discussion is also useful for students and practitioners in other fields. 
650 0 |a Earth sciences. 
650 0 |a Climatology. 
650 0 |a Atmospheric sciences. 
650 0 |a Computer mathematics. 
650 0 |a Probabilities. 
650 0 |a Statistics. 
650 0 |a Climate change. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Atmospheric Sciences. 
650 2 4 |a Climate Change. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Climatology. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Simoncini, Valeria.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048137015 
856 4 0 |u http://dx.doi.org/10.1007/978-90-481-3702-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646)