The Regularized Fast Hartley Transform Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments /

When designing high-performance DSP systems for implementation with silicon-based computing technology, the oft-encountered problem of the real-data DFT is typically addressed by exploiting an existing complex-data FFT, which can easily result in an overly complex and resource-hungry solution. The r...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jones, Keith (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2010.
Σειρά:Signals and Communication Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03941nam a22005415i 4500
001 978-90-481-3917-0
003 DE-He213
005 20151204163012.0
007 cr nn 008mamaa
008 100316s2010 ne | s |||| 0|eng d
020 |a 9789048139170  |9 978-90-481-3917-0 
024 7 |a 10.1007/978-90-481-3917-0  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
100 1 |a Jones, Keith.  |e author. 
245 1 4 |a The Regularized Fast Hartley Transform  |h [electronic resource] :  |b Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments /  |c by Keith Jones. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2010. 
300 |a XVII, 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Background to Research -- Fast Solutions to Real-Data Discrete Fourier Transform -- The Discrete Hartley Transform -- Derivation of the Regularized Fast Hartley Transform -- Algorithm Design for Hardware-Based Computing Technologies -- Derivation of Area-Efficient and Scalable Parallel Architecture -- Design of Arithmetic Unit for Resource-Constrained Solution -- Computation of 2n-Point Real-Data Discrete Fourier Transform -- Applications of Regularized Fast Hartley Transform -- Summary and Conclusions. 
520 |a When designing high-performance DSP systems for implementation with silicon-based computing technology, the oft-encountered problem of the real-data DFT is typically addressed by exploiting an existing complex-data FFT, which can easily result in an overly complex and resource-hungry solution. The research described in The Regularized Fast Hartley Transform: Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments deals with the problem by exploiting directly the real-valued nature of the data and is targeted at those real-world applications, such as mobile communications, where size and power constraints play key roles in the design and implementation of an optimal solution. The Regularized Fast Hartley Transform provides the reader with the tools necessary to both understand the proposed new formulation and to implement simple design variations that offer clear implementational advantages, both practical and theoretical, over more conventional complex-data solutions to the problem. The highly-parallel formulation described is shown to lead to scalable and device-independent solutions to the latency-constrained version of the problem which are able to optimize the use of the available silicon resources, and thus to maximize the achievable computational density, thereby making the solution a genuine advance in the design and implementation of high-performance parallel FFT algorithms. 
650 0 |a Mathematics. 
650 0 |a Computer communication systems. 
650 0 |a Fourier analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Electrical engineering. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048139163 
830 0 |a Signals and Communication Technology,  |x 1860-4862 
856 4 0 |u http://dx.doi.org/10.1007/978-90-481-3917-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)