Hyperbolic Triangle Centers The Special Relativistic Approach /

After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ungar, A.A (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2010.
Σειρά:Fundamental Theories of Physics ; 166
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04313nam a22005775i 4500
001 978-90-481-8637-2
003 DE-He213
005 20151204173117.0
007 cr nn 008mamaa
008 100623s2010 ne | s |||| 0|eng d
020 |a 9789048186372  |9 978-90-481-8637-2 
024 7 |a 10.1007/978-90-481-8637-2  |2 doi 
040 |d GrThAP 
050 4 |a QC178 
050 4 |a QC173.5-173.65 
072 7 |a PHDV  |2 bicssc 
072 7 |a PHR  |2 bicssc 
072 7 |a SCI033000  |2 bisacsh 
082 0 4 |a 530.1  |2 23 
100 1 |a Ungar, A.A.  |e author. 
245 1 0 |a Hyperbolic Triangle Centers  |h [electronic resource] :  |b The Special Relativistic Approach /  |c by A.A. Ungar. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2010. 
300 |a XVI, 319 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Fundamental Theories of Physics ;  |v 166 
505 0 |a The Special Relativistic Approach To Hyperbolic Geometry -- Einstein Gyrogroups -- Einstein Gyrovector Spaces -- When Einstein Meets Minkowski -- Mathematical Tools For Hyperbolic Geometry -- Euclidean and Hyperbolic Barycentric Coordinates -- Gyrovectors -- Gyrotrigonometry -- Hyperbolic Triangle Centers -- Gyrotriangle Gyrocenters -- Gyrotriangle Exgyrocircles -- Gyrotriangle Gyrocevians -- Epilogue. 
520 |a After A. Ungar had introduced vector algebra and Cartesian coordinates into hyperbolic geometry in his earlier books, along with novel applications in Einstein’s special theory of relativity, the purpose of his new book is to introduce hyperbolic barycentric coordinates, another important concept to embed Euclidean geometry into hyperbolic geometry. It will be demonstrated that, in full analogy to classical mechanics where barycentric coordinates are related to the Newtonian mass, barycentric coordinates are related to the Einsteinian relativistic mass in hyperbolic geometry. Contrary to general belief, Einstein’s relativistic mass hence meshes up extraordinarily well with Minkowski’s four-vector formalism of special relativity. In Euclidean geometry, barycentric coordinates can be used to determine various triangle centers. While there are many known Euclidean triangle centers, only few hyperbolic triangle centers are known, and none of the known hyperbolic triangle centers has been determined analytically with respect to its hyperbolic triangle vertices. In his recent research, the author set the ground for investigating hyperbolic triangle centers via hyperbolic barycentric coordinates, and one of the purposes of this book is to initiate a study of hyperbolic triangle centers in full analogy with the rich study of Euclidean triangle centers. Owing to its novelty, the book is aimed at a large audience: it can be enjoyed equally by upper-level undergraduates, graduate students, researchers and academics in geometry, abstract algebra, theoretical physics and astronomy. For a fruitful reading of this book, familiarity with Euclidean geometry is assumed. Mathematical-physicists and theoretical physicists are likely to enjoy the study of Einstein’s special relativity in terms of its underlying hyperbolic geometry. Geometers may enjoy the hunt for new hyperbolic triangle centers and, finally, astronomers may use hyperbolic barycentric coordinates in the velocity space of cosmology. 
650 0 |a Physics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Geometry. 
650 0 |a Gravitation. 
650 0 |a Astronomy. 
650 0 |a Astrophysics. 
650 0 |a Cosmology. 
650 1 4 |a Physics. 
650 2 4 |a Classical and Quantum Gravitation, Relativity Theory. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Geometry. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Astronomy, Astrophysics and Cosmology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048186365 
830 0 |a Fundamental Theories of Physics ;  |v 166 
856 4 0 |u http://dx.doi.org/10.1007/978-90-481-8637-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)