Mathematical Foundation of Quantum Mechanics

This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the firs...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Parthasarathy, K. R. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2005.
Σειρά:Texts and Readings in Mathematics, 35
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02981nam a22004095i 4500
001 978-93-86279-28-6
003 DE-He213
005 20170720084857.0
007 cr nn 008mamaa
008 170720s2005 xx | s |||| 0|eng d
020 |a 9789386279286  |9 978-93-86279-28-6 
024 7 |a 10.1007/978-93-86279-28-6  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Parthasarathy, K. R.  |e author. 
245 1 0 |a Mathematical Foundation of Quantum Mechanics  |h [electronic resource] /  |c by K. R. Parthasarathy. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2005. 
300 |a 178 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 35 
520 |a This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations in the second chapter. Based on a discussion of multipliers on locally compact groups in the third chapter all the well-known observables of classical quantum theory like linear momenta, orbital and spin angular momenta, kinetic and potential energies, gauge operators etc., are derived solely from Galilean covariance in the last chapter. A very short account of observables concerning a relativistic free particle is included. In conclusion, the spectral theory of Schrodinger operators of one and two electron atoms is discussed in some detail. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788185931593 
830 0 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 35 
856 4 0 |u http://dx.doi.org/10.1007/978-93-86279-28-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)