Arithmetical Aspects of the Large Sieve Inequality

This book is an elaboration of a series of lectures given at the Harish-Chandra Research Institute. The reader will be taken through a journey on the arithmetical sides of the large sieve inequality when applied to the Farey dissection. This will reveal connections between this inequality, the Selbe...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ramaré, Olivier (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ramana, D. S. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2009.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02495nam a22003975i 4500
001 978-93-86279-40-8
003 DE-He213
005 20170720103019.0
007 cr nn 008mamaa
008 170720s2009 xx | s |||| 0|eng d
020 |a 9789386279408  |9 978-93-86279-40-8 
024 7 |a 10.1007/978-93-86279-40-8  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Ramaré, Olivier.  |e author. 
245 1 0 |a Arithmetical Aspects of the Large Sieve Inequality  |h [electronic resource] /  |c by Olivier Ramaré ; edited by D. S. Ramana. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2009. 
300 |a 212 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This book is an elaboration of a series of lectures given at the Harish-Chandra Research Institute. The reader will be taken through a journey on the arithmetical sides of the large sieve inequality when applied to the Farey dissection. This will reveal connections between this inequality, the Selberg sieve and other less used notions like pseudo-characters and the $\Lambda_Q$-function, as well as extend these theories. One of the leading themes of these notes is the notion of so-called\emph{local models} that throws a unifying light on the subject. As examples and applications, the authors present, among other things, an extension of the Brun-Tichmarsh Theorem, a new proof of Linnik's Theorem on quadratic residues and an equally novel one of the Vinogradov three primes Theorem; the authors also consider the problem of small prime gaps, of sums of two squarefree numbers and several other ones, some of them being new, like a sharp upper bound for the number of twin primes $p$ that are such that $p+1$ is squarefree. In the end the problem of equality in the large sieve inequality is considered and several results in this area are also proved. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
700 1 |a Ramana, D. S.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9788185931906 
856 4 0 |u http://dx.doi.org/10.1007/978-93-86279-40-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)