Basic Ergodic Theory

This is an introductory book on Ergodic Theory. The presentation has a slow pace and the book can be read by any person with a background in basic measure theory and metric topology. A new feature of the book is that the basic topics of Ergodic Theory such as the Poincare recurrence lemma, induced a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nadkarni, M. G. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2013.
Έκδοση:Third Edition.
Σειρά:Texts and Readings in Mathematics, 6
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02308nam a22004215i 4500
001 978-93-86279-53-8
003 DE-He213
005 20170720071619.0
007 cr nn 008mamaa
008 170720s2013 xx | s |||| 0|eng d
020 |a 9789386279538  |9 978-93-86279-53-8 
024 7 |a 10.1007/978-93-86279-53-8  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Nadkarni, M. G.  |e author. 
245 1 0 |a Basic Ergodic Theory  |h [electronic resource] /  |c by M. G. Nadkarni. 
250 |a Third Edition. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2013. 
300 |a 196 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 6 
520 |a This is an introductory book on Ergodic Theory. The presentation has a slow pace and the book can be read by any person with a background in basic measure theory and metric topology. A new feature of the book is that the basic topics of Ergodic Theory such as the Poincare recurrence lemma, induced automorphisms and Kakutani towers, compressibility and E. Hopf's theorem, the theorem of Ambrose on representation of flows are treated at the descriptive set-theoretic level before their measure-theoretic or topological versions are presented. In addition, topics around the Glimm-Effros theorem are discussed. In the third edition a chapter entitled 'Additional Topics' has been added. It gives Liouville's Theorem on the existence of invariant measure, entropy theory leading up to Kolmogorov-Sinai Theorem, and the topological dynamics proof of van der Waerden's theorem on arithmetical progressions. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789380250434 
830 0 |a Texts and Readings in Mathematics,  |x 2366-8717 ;  |v 6 
856 4 0 |u http://dx.doi.org/10.1007/978-93-86279-53-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)