Diophantine Approximation and Dirichlet Series

This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Queffélec, Hervé (Συγγραφέας), Queffélec, Martine (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Gurgaon : Hindustan Book Agency : Imprint: Hindustan Book Agency, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02676nam a22003975i 4500
001 978-93-86279-61-3
003 DE-He213
005 20170720110412.0
007 cr nn 008mamaa
008 170720s2013 xx | s |||| 0|eng d
020 |a 9789386279613  |9 978-93-86279-61-3 
024 7 |a 10.1007/978-93-86279-61-3  |2 doi 
040 |d GrThAP 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 |a Queffélec, Hervé.  |e author. 
245 1 0 |a Diophantine Approximation and Dirichlet Series  |h [electronic resource] /  |c by Hervé Queffélec, Martine Queffélec. 
264 1 |a Gurgaon :  |b Hindustan Book Agency :  |b Imprint: Hindustan Book Agency,  |c 2013. 
300 |a 244 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This self-contained book will benefit beginners as well as researchers. It is devoted to Diophantine approximation, the analytic theory of Dirichlet series, and some connections between these two domains, which often occur through the Kronecker approximation theorem. Accordingly, the book is divided into seven chapters, the first three of which present tools from commutative harmonic analysis, including a sharp form of the uncertainty principle, ergodic theory and Diophantine approximation to be used in the sequel. A presentation of continued fraction expansions, including the mixing property of the Gauss map, is given. Chapters four and five present the general theory of Dirichlet series, with classes of examples connected to continued fractions, the famous Bohr point of view, and then the use of random Dirichlet series to produce non-trivial extremal examples, including sharp forms of the Bohnenblust-Hille theorem. Chapter six deals with Hardy-Dirichlet spaces, which are new and useful Banach spaces of analytic functions in a half-plane. Finally, chapter seven presents the Bagchi-Voronin universality theorems, for the zeta function, and r-tuples of L functions. The proofs, which mix hilbertian geometry, complex and harmonic analysis, and ergodic theory, are a very good illustration of the material studied earlier. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
700 1 |a Queffélec, Martine.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789380250533 
856 4 0 |u http://dx.doi.org/10.1007/978-93-86279-61-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)