Hybrid Logic and its Proof-Theory

This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model (where the points represent times, possible worlds, states in a computer, or something else). This is use...

Full description

Bibliographic Details
Main Author: Braüner, Torben (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Dordrecht : Springer Netherlands, 2011.
Series:Applied Logic Series, 37
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02996nam a22004695i 4500
001 978-94-007-0002-4
003 DE-He213
005 20151125211840.0
007 cr nn 008mamaa
008 101117s2011 ne | s |||| 0|eng d
020 |a 9789400700024  |9 978-94-007-0002-4 
024 7 |a 10.1007/978-94-007-0002-4  |2 doi 
040 |d GrThAP 
050 4 |a BC1-199 
072 7 |a HPL  |2 bicssc 
072 7 |a PHI011000  |2 bisacsh 
082 0 4 |a 160  |2 23 
100 1 |a Braüner, Torben.  |e author. 
245 1 0 |a Hybrid Logic and its Proof-Theory  |h [electronic resource] /  |c by Torben Braüner. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2011. 
300 |a XIII, 231 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Logic Series,  |x 1386-2790 ;  |v 37 
505 0 |a Preface, -- 1 Introduction to Hybrid Logic -- 2 Proof-Theory of Propositional Hybrid Logic -- 3 Tableaus and Decision Procedures for Hybrid Logic -- 4 Comparison to Seligman’s Natural Deduction System -- 5 Functional Completeness for a Hybrid Logic -- 6 First-Order Hybrid -- 7 Intensional First-Order Hybrid Logic -- 8 Intuitionistic Hybrid Logic -- 9 Labelled Versus Internalized Natural Deduction -- 10 Why does the Proof-Theory of Hybrid Logic Behave soWell? - References -- Index. 
520 |a This is the first book-length treatment of hybrid logic and its proof-theory. Hybrid logic is an extension of ordinary modal logic which allows explicit reference to individual points in a model (where the points represent times, possible worlds, states in a computer, or something else). This is useful for many applications, for example when reasoning about time one often wants to formulate a series of statements about what happens at specific times. There is little consensus about proof-theory for ordinary modal logic. Many modal-logical proof systems lack important properties and the relationships between proof systems for different modal logics are often unclear. In the present book we demonstrate that hybrid-logical proof-theory remedies these deficiencies by giving a spectrum of well-behaved proof systems (natural deduction, Gentzen, tableau, and axiom systems) for a spectrum of different hybrid logics (propositional, first-order, intensional first-order, and intuitionistic). 
650 0 |a Philosophy. 
650 0 |a Logic. 
650 0 |a Mathematical logic. 
650 1 4 |a Philosophy. 
650 2 4 |a Logic. 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400700017 
830 0 |a Applied Logic Series,  |x 1386-2790 ;  |v 37 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-0002-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)