Linear and Nonlinear Control of Small-Scale Unmanned Helicopters

There has been significant interest for designing flight controllers for small-scale unmanned helicopters. Such helicopters preserve all the physical attributes of their full-scale counterparts, being at the same time more agile and dexterous. This book presents a comprehensive and well justified an...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Raptis, Ioannis A. (Συγγραφέας), Valavanis, Kimon P. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2011.
Σειρά:Intelligent Systems, Control and Automation: Science and Engineering, 45
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • 1 Introduction
  • 1.1 Background Information
  • 1.2 The Mathematical Problem .
  • 1.3 Controller Designs
  • 1.3.1 Linear Controller Design
  • 1.3.2 Nonlinear Controller Design
  • 1.4 Outline of the Book
  • 2 Review of Linear and Nonlinear Controller Designs
  • 2.1 Linear Controller Designs
  • 2.2 Nonlinear Controller Design
  • 2.3 Remarks
  • 3 Helicopter Basic Equations of Motion
  • 3.1 Helicopter Equations of Motion
  • 3.2 Position and Orientation of the Helicopter
  • 3.2.1 Helicopter Position Dynamics
  • 3.2.2 Helicopter Orientation Dynamics
  • 3.3 Complete Helicopter Dynamics
  • 3.4 Remarks
  • 4 Simplified Rotor Dynamics
  • 4.1 Introduction
  • 4.2 Blade Motion
  • 4.3 Swashplate Mechanism
  • 4.4 Fundamental Rotor Aerodynamics
  • 4.5 Flapping Equations of Motion
  • 4.6 Rotor Tip-Path-Plane Equation
  • 4.7 First Order Tip-Path-Plane Equations
  • 4.8 Main Rotor Forces and Moments
  • 4.9 Remarks
  • 5 Frequency Domain System Identification
  • 5.1 Mathematical Modeling
  • 5.1.1 First Principles Modeling
  • 5.1.2 System Identification Modeling
  • 5.2 Frequency Domain System Identification
  • 5.3 Advantages of the Frequency Domain Identification
  • 5.4 Helicopter Identification Challenges
  • 5.5 Frequency Response and the Coherence Function
  • 5.6 The CIFER c Package
  • 5.7 Time History Data and Excitation Inputs
  • 5.8 Linearization of the Equations of Motion
  • 5.9 Stability and Control Derivatives
  • 5.10 Model Identification
  • 5.10.1 Experimental Platform
  • 5.10.2 Parametrized State Space Model
  • 5.10.3 Identification Setup
  • 5.10.4 Time Domain Validation
  • 5.11 Remarks
  • 6 Linear Tracking Controller Design for Small-Scale Unmanned Helicopters
  • 6.1 Helicopter Linear Model
  • 6.2 Linear Controller Design Outline
  • 6.3 Decomposing the System
  • 6.4 Velocity and Heading Tracking Controller Design
  • 6.4.1 Lateral-Longitudinal Dynamics
  • 6.4.2 Yaw-Heave Dynamics
  • 6.4.3 Stability of the Complete System Error Dynamics
  • 6.5 Position and Heading Tracking
  • 6.6 PID Controller Design
  • 6.7 Experimental Results
  • 6.8 Remarks
  • 7 Nonlinear Tracking Controller Design for Unmanned Helicopters
  • 7.1 Introduction
  • 7.2 Helicopter Nonlinear Model
  • 7.2.1 Rigid Body Dynamics
  • 7.2.2 ExternalWrench Model
  • 7.2.3 Complete Rigid Body Dynamics
  • 7.3 Translational Error Dynamics
  • 7.4 Attitude Error Dynamics
  • 7.4.1 Yaw Error Dynamics
  • 7.4.2 Orientation Error Dynamics
  • 7.4.3 Angular Velocity Error Dynamics
  • 7.5 Stability of the Attitude Error Dynamics
  • 7.6 Stability of the Translational Error Dynamics
  • 7.7 Numeric Simulation Results
  • 7.8 Remarks
  • 8 Time Domain Parameter Estimation and Applied Discrete Nonlinear Control for Small-Scale Unmanned Helicopters
  • 8.1 Introduction
  • 8.2 Discrete System Dynamics
  • 8.3 Discrete Backstepping Algorithm
  • 8.3.1 Angular Velocity Dynamics
  • 8.3.2 Translational Dynamics
  • 8.3.3 Yaw Dynamics
  • 8.4 Parameter Estimation Using Recursive Least Squares
  • 8.5 Parametric Model
  • 8.6 Experimental Results
  • 8.6.1 Time History Data and Excitation Inputs
  • 8.6.2 Validation
  • 8.6.3 Control Design
  • 8.7 Remarks
  • 9 Time Domain System Identification for Small-Scale Unmanned Helicopters Using Fuzzy Models
  • 9.1 Introduction
  • 9.2 Takagi-Sugeno Fuzzy Models
  • 9.3 Proposed Takagi-Sugeno System for Helicopters
  • 9.4 Experimental Results
  • 9.4.1 Tunning of the Membership Function Parameters
  • 9.4.2 Validation
  • 10 Comparison Studies
  • 10.1 Summary of the Controller Designs
  • 10.2 Experimental Results
  • 10.3 First Maneuver: Forward Flight
  • 10.4 Second Maneuver: Aggressive Forward Flight
  • 10.5 Third Maneuver: 8 Shaped Trajectory
  • 10.6 Fourth Maneuver: Pirouette Trajectory
  • 10.7 Remarks
  • 11 Epilogue
  • 11.1 Introduction
  • 11.2 Advantages and Novelties of the Designs
  • 11.3 Testing and Implementation
  • 11.4 Remarks
  • A Fundamentals of Backstepping Control
  • A.1 Integrator Backstepping
  • A.2 Example of a Recursive Backstepping Design
  • References.