Strict Finitism and the Logic of Mathematical Applications

This book intends to show that radical naturalism (or physicalism), nominalism and strict finitism account for the applications of classical mathematics in current scientific theories. The applied mathematical theories developed in the book include the basics of calculus, metric space theory, comple...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ye, Feng (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2011.
Σειρά:Synthese Library, Studies in Epistemology, Logic, Methodology, and Philosophy of Science ; 355
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02874nam a22004815i 4500
001 978-94-007-1347-5
003 DE-He213
005 20151121012126.0
007 cr nn 008mamaa
008 110705s2011 ne | s |||| 0|eng d
020 |a 9789400713475  |9 978-94-007-1347-5 
024 7 |a 10.1007/978-94-007-1347-5  |2 doi 
040 |d GrThAP 
050 4 |a B67 
072 7 |a PDA  |2 bicssc 
072 7 |a SCI075000  |2 bisacsh 
082 0 4 |a 501  |2 23 
100 1 |a Ye, Feng.  |e author. 
245 1 0 |a Strict Finitism and the Logic of Mathematical Applications  |h [electronic resource] /  |c by Feng Ye. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 272 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthese Library, Studies in Epistemology, Logic, Methodology, and Philosophy of Science ;  |v 355 
505 0 |a 1. Introduction -- 2. Strict Finitism -- 3. Calculus -- 4. Metric Space -- 5. Complex Analysis -- 6. Integration -- 7. Hilbert Space -- 8. Semi-Riemann Geometry.- References -- Index. 
520 |a This book intends to show that radical naturalism (or physicalism), nominalism and strict finitism account for the applications of classical mathematics in current scientific theories. The applied mathematical theories developed in the book include the basics of calculus, metric space theory, complex analysis, Lebesgue integration, Hilbert spaces, and semi-Riemann geometry (sufficient for the applications in classical quantum mechanics and general relativity). The fact that so much applied mathematics can be developed within such a weak, strictly finitistic system, is surprising in itself. It also shows that the applications of those classical theories to the finite physical world can be translated into the applications of strict finitism, which demonstrates the applicability of those classical theories without assuming the literal truth of those theories or the reality of infinity. Both professional researchers and students of philosophy of mathematics will benefit greatly from reading this book. 
650 0 |a Philosophy. 
650 0 |a Logic. 
650 0 |a Philosophy and science. 
650 0 |a Mathematical logic. 
650 1 4 |a Philosophy. 
650 2 4 |a Philosophy of Science. 
650 2 4 |a Logic. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400713468 
830 0 |a Synthese Library, Studies in Epistemology, Logic, Methodology, and Philosophy of Science ;  |v 355 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-1347-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)