Viability of Hybrid Systems A Controllability Operator Approach /

The problem of viability of hybrid systems is considered in this work. A model for a hybrid system is developed including a means of including three forms of uncertainty: transition dynamics, structural uncertainty, and parametric uncertainty. A computational basis for viability of hybrid systems is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Labinaz, G. (Συγγραφέας), Guay, M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands, 2012.
Σειρά:Intelligent Systems, Control and Automation: Science and Engineering ; 55
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05280nam a22005535i 4500
001 978-94-007-2521-8
003 DE-He213
005 20151030071106.0
007 cr nn 008mamaa
008 110930s2012 ne | s |||| 0|eng d
020 |a 9789400725218  |9 978-94-007-2521-8 
024 7 |a 10.1007/978-94-007-2521-8  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Labinaz, G.  |e author. 
245 1 0 |a Viability of Hybrid Systems  |h [electronic resource] :  |b A Controllability Operator Approach /  |c by G. Labinaz, M. Guay. 
264 1 |a Dordrecht :  |b Springer Netherlands,  |c 2012. 
300 |a X, 246 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems, Control and Automation: Science and Engineering ;  |v 55 
505 0 |a 1 Introduction --  1.1 Motivation and History --  1.2 Summary and Organization --  1.3 Summary --  2 Literature Review --  2.1 Nerode et al Approach to Viability of Hybrid Systems [50],[71] --  2.2 Aubin et al Approach to Viability of Hybrid Systems [15] --  2.3 Deshpande{Varaiya Approach to Viability of Hybrid Systems [35] --  2.4 Related Literature --  2.5 Conclusion --  3 Hybrid Model --  3.1 Hybrid Phenomena and Hybrid Model --  3.2 Hybrid Trajectories and their Ordering --  3.3 Continuity, Fixed Points, and Correct Finite Control Automaton --  3.4 Uncertainty in Hybrid Systems --  3.5 The Three-Tank Problem --  3.6 Nerode{Kohn Formalism for Hybrid Systems --  3.7 Conclusion --  4 Viability --  4.1 Background --  4.2 Time{Independent Viability Set --  4.3 Fixed Point Approximation --  4.4 Computation of TIC{COFPAA{I for Three Admissible Control Law Classes --  4.4.1 Piecewise Constant Control --  4.4.2 Piecewise Constant with Finite Switching --  4.4.3 Piecewise Constant with Polynomial Control --  4.5 Time{Dependent Viability Set --  4.5.1 Piecewise Constant Control --  4.6 Examples --  4.6.1 Time{Independent Constraints --  4.6.2 Time{Dependent Constraints --  4.7 Conclusion --  5 Robust Viability --  5.1 Uncertainty and Robustness --  5.2 Ordering of the Controllability Operator under Uncertainty --  5.3 The Uncertain Controllability Operator and the Uncertainty Operator --  5.4 Robust Viability --  5.5 Robust Viability Control Design --  5.6 Examples --  5.7 Conclusion --  6 Viability in Practice --  6.1 Reachable Set Computation of the Controllability Operator --  6.2 Viable Cascade Control and Application to a Batch Polymerization Process [55][56] --  6.2.1 Batch Polymerization Process Model --  6.2.2 Hybrid Model --  6.2.3 Viable Cascade Control --  6.2.4 Batch Polymerization Control --  6.2.5 Discussion and Conclusions --  6.2.6 Appendix --  6.3 Conclusion --  7 An Operator Approach to Viable Attainability of Hybrid Systems [60] --  7.1 Introduction --  7.2 Attainability and the Attainability Operator --  7.3 Viable Attainability and the Viable Attainability Operator --  7.4 Simulation Examples --  7.5 Conclusion --  8 Some Topics Related to the Controllability Operator --  8.1 Topological Continuity Arising from Fixed Point Approximation Algorithm --  8.2 The Lattice over Control Laws of the Controllability Operator --  8.3 Homotopic Approximation under PWC_ -- k --  PWCPC_ -- k --  8.4 Conclusion --  9 Conclusions --  References. 
520 |a The problem of viability of hybrid systems is considered in this work. A model for a hybrid system is developed including a means of including three forms of uncertainty: transition dynamics, structural uncertainty, and parametric uncertainty. A computational basis for viability of hybrid systems is developed and applied to three control law classes. An approach is developed for robust viability based on two extensions of the controllability operator. The three-tank example is examined for both the viability problem and robust viability problem. The theory is applied through simulation to an active magnetic bearing system and to a batch polymerization process showing that viability can be satisfied in practice. The problem of viable attainability is examined based on the controllability operator approach introduced by Nerode and colleagues. Lastly, properties of the controllability operator are presented. 
650 0 |a Mathematics. 
650 0 |a System theory. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Vibration, Dynamical Systems, Control. 
700 1 |a Guay, M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400725201 
830 0 |a Intelligent Systems, Control and Automation: Science and Engineering ;  |v 55 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-2521-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)