Adaptive Feed-Forward Control of Low Frequency Interior Noise
This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands,
2012.
|
Σειρά: | Intelligent Systems, Control and Automation: Science and Engineering ;
56 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Part I Introduction
- 1 Introduction to Interior Active Noise Control
- 1.1 Idea, Limit and Structure of Active Control Concepts
- 1.2 Remarks on Interior Noise and Active Control Approaches
- 1.2.1 Comments on the Interior Noise Problem
- 1.2.2 Comments on Active Control Approaches
- 1.2.3 A Qualitative Comparison of Active Control Approaches
- 1.3 Examples for Engineering Applications of Interior ANC
- 1.4 Objective of Book
- Part II The Mechatronic Background of Feed-Forward Active Noise Control
- 2 Comments on Signals and Systems
- 2.1 Comments on Signals
- 2.1.1 Classification
- 2.1.2 Characteristic Values and Functions
- 2.2 Comments on Systems
- 2.2.1 Definitions
- 2.2.2 Transfer Behaviour of LTI-Systems
- 3 Dynamics of Basic System
- 3.1 Basic Field Variables
- 3.2 Acoustic Field Equations
- 3.3 Energy Density and Sound Intensity
- 3.4 One-Dimensional Enclosed Sound Fields
- 3.4.1 Free Vibrations in One-Dimensional Sound Fields
- 3.4.2 Forced Vibrations in One-Dimensional Sound Fields
- 4 Sensors for Active Noise Control
- 4.1 Acoustical Sensing by Condenser Type Microphones
- 4.2 Sound Intensity Measurement
- 4.2.1 Functional Principle of Sound Intensity Probes
- 4.2.2 Errors in Sound Intensity Measurements
- 4.3 Structural Sensing by Accelerometers
- 5 Actuators for Active Noise Control
- 5.1 Electro-Dynamical Loudspeakers
- 5.2 Electro-Dynamical Panel Speakers
- 6 Active Control of Tonal and Broadband Noise
- 6.1 Mathematical Preparation
- 6.1.1 Hermitian Matrices
- 6.1.2 Quadratic Optimization
- 6.1.3 Steepest-Decent Algorithm
- 6.2 Terms and Structure of Feed-Forward Control Approaches
- 6.3 Review and Evaluation of Control Strategies
- 6.3.1 Description of Benchmark System and Close Form Solution
- 6.3.2 Analysis of Specific Control Strategies
- 6.3.3 Comparison of Control Strategies
- 6.4 Multi-channel Control of Tonal Noise
- 6.4.1 Optimal Control of Tonal Noise
- 6.4.2 Adaptive Control of Tonal Noise
- 6.5 Active Control of Tonal Noise with Modified Cost Functions
- 6.5.1 Optimal Control Using a General Cost Function
- 6.5.2 Remote Sensor Control
- 6.5.3 Parametric Controller Design
- 6.6 Multi-channel Control of Stochastic Disturbances
- 6.6.1 Optimal Control of Stochastic Disturbances
- 6.6.2 Adaptive Control of Stochastic Disturbances
- 6.7 A Very Short Note on Adaptive Feedback Control
- Part III ANC-System Design: Theory
- 7 ANC-System Design Tools
- 7.1 Numerical Analysis of Sound Fields
- 7.1.1 A Short Overview on Numerical Methods
- 7.1.2 The Finite Element Method
- 7.2 Inverse Noise Source Identification
- 7.2.1 A Note on Source Identification Methods
- 7.2.2 The Inverse Finite Element Method
- 7.3 Initial Performance Estimation
- 7.3.1 Coherence Analysis
- 7.3.2 Transducer Placement Analysis
- 7.3.3 Correlation Analysis
- 7.3.4 Impulse Response Analysis
- 7.3.5 A Short Comparison of Initial Performance Estimators
- 7.4 Two Short Remarks on the Effect of Sampling Frequency
- 8 ANC-System Design Methodology
- 8.1 A Note on the Design Methodology for Mechatronic Systems
- 8.2 System Maturity Levels
- 8.3 A Design Methodology for ANC-Systems
- 8.3.1 ANC-System Design Tasks
- 8.3.2 ANC-System Design Steps
- 8.3.3 Matrix Model of the ANC-System Design Process
- Part IV ANC-System Design: Examples
- 9 Active Noise Control in a Semi-Closed Interior
- 9.1 Description of Problem and Requirements
- 9.2 Feasibility Study on ANC for the MA WA
- 9.2.1 Noise Field Analysis for the MA WA
- 9.2.2 Formulation of ANC-System Concept for the MA WA
- 9.2.3 Proof of MA WA ANC-System Concept
- 9.3 First Specification of Active Noise System
- 9.3.1 First Specification of Microphones
- 9.3.2 First Specification of Actuators
- 9.3.3 First Specification of Controller Software
- 9.3.4 Evaluation of First Specification
- 9.4 Weight, Cost and Efficiency Study
- 9.4.1 Actuator Design for ANC in the MA WA
- 9.4.2 Improvement of Adaptive Signal Processing
- 9.4.3 Optimization of Sensor and Actuator Locations
- 9.5 Sensitivity Study for ANC in MA WA
- 9.6 Robust Control of Sound in the MA WA
- 9.6.1 Design, Construction and Verification of Relevant Test Rig
- 9.6.2 Determination and Modelling of Uncertainties
- 9.6.3 Review of the MA WA Robust Control Approach
- 9.7 Design Process Summary
- 10 A Sound Intensity Probe with Active Free Field
- 10.1 Feasibility Study on an Active Intensity Probe
- 10.1.1 Analysis of the Controlled Sound Field
- 10.1.2 Formulation of SIAF-System Concept
- 10.1.3 Controller Design and Proof of SIAF-System Concept
- 10.2 First Specification of an Active Intensity Probe
- 10.2.1 First Specification of System Hardware
- 10.2.2 Test of First SIAF-Specification
- 10.3 Design Process Summary and Outlook
- 11 Active Noise Control Around Human Head
- 11.1 Feasibility Study on Local ANC in Bedrooms
- 11.1.1 Description of Bedroom Test Rig
- 11.1.2 Noise Field Analysis in the Transmission Test Rig
- 11.1.3 Anti-Noise Field Analysis in the Transmission Test Rig
- 11.1.4 Comments on Domain-Specific Design for Broadband ANC
- 11.1.5 System Integration and Functional Testing of Local ANC
- 11.1.6 Summary of Feasibility Study
- 11.2 Comments on the Application of Virtual Microphones
- 12 Active Noise Control and Audio Entertainment
- 12.1 Aircraft Interior Noise and ANC with Audio Entertainment
- 12.1.1 Comments on Aircraft Interior Noise
- 12.1.2 Comments on Hybrid ANC-Audio Systems
- 12.2 Feasibility Study on a Very Light Jet ANC-Audio System
- 12.2.1 In-Flight Measurements and Noise Field Analysis
- 12.2.2 Anti-Noise Field Analysis using a VLJ Mock-Up
- 12.2.3 Design of the ANC-Audio Controller
- 12.2.4 Integration and Test of the ANC-Audio Controller
- 12.2.5 ANC-Audio System Design Process Summary
- 13 Noise Source Localization in an Aircraft Cabin
- 13.1 Acoustic Ground Tests in an Aircraft Cross-Section
- 13.1.1 Description of the Aircraft Mock-Up
- 13.1.2 Description of Ground Test Experiments and Results
- 13.2 Inverse Calculation for an Aircraft Cross-Section
- 13.3 IFEM Application Summary
- Part V Summary
- References
- Index.