Lighter than Air Robots Guidance and Control of Autonomous Airships /
An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an u...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2012.
|
Σειρά: | Intelligent Systems, Control and Automation: Science and Engineering,
58 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Introduction
- 1.1 Aerial robotics
- 1.2 Outline of the book
- 2 Modeling
- 2.1 Introduction
- 2.2 Kinematics
- 2.2.1 Euler angles
- 2.2.2 Euler parameters
- 2.3 Dynamics
- 2.3.1 Mass Characteristics
- 2.3.2 6 DOF Dynamics : Newton-Euler Approach
- 2.3.3 6 DOF Dynamics : Lagrange Approach
- 2.3.4 Translational Dynamics .
- 2.4 Aerology Characteristics
- 2.4.1 Wind Profile
- 2.4.2 Down burst
- 2.5 Conclusions
- 3 Mission Planning
- 3.1 Introduction
- 3.2 Flight Planning
- 3.3 Motion Planning Algorithms Review
- 3.3.1 Overall Problem description
- 3.3.2 Problem Types
- 3.4 Planning with differential constraints
- 3.4.1 Roadmap algorithm
- 3.4.2 Artificial Potential Methods
- 3.4.3 Sampling based trajectory planning
- 3.4.4 Decoupled Trajectory Planning
- 3.4.5 The Finite State Motion Model: The Maneuver Automaton
- 3.4.6 Mathematical Programming
- 3.4.7 Receding Horizon Control
- 3.4.8 Reactive Planning
- 3.4.9 Probabilistic Roadmap Methods: PRM
- 3.4.10 Rapidly Expanding Random Tree (RRT)
- 3.4.11 Guided Expansive Search Trees
- 3.5 Planning with Uncertain Winds
- 3.5.1 Receding Horizon Approach
- 3.5.2 Markov Decision Process Approach
- 3.5.3 Chance constrained predictive control under stochastic uncertainty
- 3.6 Planning in Strong Winds
- 3.7 Task Assignment
- 3.8 Conclusions
- 4.1 Introduction
- 4.2 Trajectory Generation in Hover
- 4.2.1 Trim Trajectories
- 4.2.2 Under-actuation at Hover
- 4.3 Lateral planning in cruising flight
- 4.3.1 Lateral dynamics of the lighter than air robot
- 4.3.2 Time Optimal Extremals
- 4.4 Zermelo Navigation Problem
- 4.4.1 Navigation equation
- 4.4.2 One particular solution
- 4.5 3D Trajectory design with wind
- 4.5.1 Determination of the Reference Controls
- 4.5.2 Accessibility and Controllability
- 4.5.3 Motion Planning when wind can be neglected
- 4.5.4 Determination of the Minimum Energy Trajectories
- 4.5.5 Determination of Time Optimal Trajectories
- 4.6 Parametric Curves
- 4.6.1 Cartesian polynomials
- 4.6.2 Trim Flight Paths
- 4.6.3 Non Trim Flight Paths
- 4.6.4 Maneuvers between two different trims
- 4.6.5 Frenet -Serret Approach
- 4.6.6 Pythagorean Hodograph
- 4.6.7 h3 Splines
- 4.7 Conclusions
- 5 Control
- 5.1 Introduction
- 5.2 Linear Control
- 5.2.1 Linear Formulation in Cruising flight
- 5.2.2 Flying and Handling Qualities
- 5.2.3 Classical Linear Control
- 5.2.4 Linear Robust Control
- 5.3 Nonlinear Control
- 5.3.1 Dynamic Inversion
- 5.3.2 Trajectory Tracking in a High Constant Altitude Flight
- 5.3.3 Variable Structure Robust Control
- 5.3.4 Back stepping controller design
- 5.3.5 Line tracking by path curvature and torsion
- 5.3.6 Intelligent Control
- 5.4 System Health Management
- 5.4.1 Health Monitoring
- 5.4.2 Diagnosis, Response to systems failure
- 5.5 Conclusions
- 6 General Conclusions
- 7 References
- References
- A Current Projects
- A.1 Introduction
- A.2 Artic Airship
- A.2.1 Vehicle Description
- A.2.2 Weight, mass distribution and balance
- A.2.3 Modeling and identification
- A.2.4 Aerodynamics
- A.2.5 Localization and positioning
- A.2.6 Navigation and Path Planner
- A.2.7 Feeding the path planner with realistic wind information
- A.2.8 Data processing and transmission
- A.2.9 Airship Piloting and Response to wind disturbances
- A.2.10 Loading and unloading lifts
- A.2.11 Diagnosis, Response to systems failure
- A.2.12 Flight dynamics simulator
- A.2.13 Small scale delta-wing quad-rotor airship
- A.2.14 Ground handling
- A.3 Bridge Monitoring
- A.4 Monitoring of high voltage power networks
- A.4.1 Current market for inspection of electrical networks
- A.4.2 Project Goals
- A.5 FAA Recommendations
- A.6 Indoor Lighter Than Air Robot : A Differential Geometry Modeling Approach
- Index.