Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties /

Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various f...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Skorupa, Andrzej (Συγγραφέας), Skorupa, Malgorzata (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2012.
Σειρά:Solid Mechanics and Its Applications, 189
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Preface
  • Nomenclature
  • Acknowledgements
  • Units and conversion factors,- Chapter 1: Riveted lap joints in a pressurized aircraft fuselage
  •  1.1. Constructional solutions of the fuselage skin structure
  •  1.2. Loading conditions for a longitudinal lap splice joint
  •  1.3. Bonded and riveted-bonded lap joints
  •  1.4. Fatigue damage of longitudinal lap splice joints
  •  1.5. Summary of this chapter
  •  Chapter 2: Differences between the fatigue behaviour of Longitudinal lap joints in a Pressurized fuselage and laboratory lap joint specimens
  •  2.1. Stress distribution and specimen geometry
  •  2.2. Effect of the load frequency and environmental conditions
  •  2.3. Summary of this chapter
  •  Chapter 3: Production variables influencing the fatigue behaviour of  riveted lap jointS
  •  3.1. Sheet material
  •  3.2. Fastener type and material
  •  3.3. Manufacturing process
  •  3.3.1. Riveting method
  •  3.3.2. Imperfections of rivet holes
  •  3.3.3. Cold working of rivet holes
  •  3.3.4. Surface treatment of the sheets
  •  3.3.5. Squeeze force
  •  (a) Effect of the squeeze force on fatigue life
  •  (b) Dependence of rivet driven head dimensions on the squeeze force
  •  (c) Dependence of rivet hole expansion on the squeeze force
  •  (d) Residual stresses due to the riveting process
  •  3.4. Summary of this chapter
  •  Chapter 4: Design parameters influencing the fatigue behaviour of riveted lap joints
  •  4.1. Number of rivet rows
  •  4.2. Rivet row spacing
  •  4.3. Rivet pitch in row
  •  4.4. Distance of the rivet from the sheet edge
  •  4.5. Rivet pattern
  •  4.6. Sheet thickness
  •  4.7. Size effect
  •  4.8. Summary of this chapter
  •  Chapter 5: Load transfer in lap joints with mechanical fasteners
  •  5.1. Simple computation of axial forces in the sheets
  •  5.2. Fastener flexibility
  •  5.2.1. Analytical solution
  • 5.2.2. Experimental determination
  •  5.3. Measurement results on load transmission
  •  5.4. Frictional forces
  •  5.5. Summary of this chapter
  •  Chapter 6: Secondary bending for mechanically fastened joints with eccentricities
  •  6. 1. The phenomenon of secondary bending
  •  6.2. Analytical investigations
  •  6.2.1. Models
  •  6.2.2. Exemplary applications to lap joints
  •  (a) Standard geometry
  •  (b) Padded and staggered thickness geometry
  •  6.3. Finite element modelling
  •  6.4. Measurements of secondary bending
  •  6.4.1. Methodology
  •  6.4.2. Comparisons between measured and computed results
  •  6.4.3. Parametric studies
  •  6.4.4. In situ measurement results
  •  6.5. Fatigue behaviour of joints exhibiting secondary bending
  •  6.5.1. Effect of secondary bending on fatigue life
  •  6.5.2. Effect of  faying surface conditions
  •  6.6. Summary of this chapter
  •  Chapter 7: Crack initiation location and crack shape development in riveted lap joints – experimental trends
  •  7.1. Crack initiation site
  •  7.1.1. Static loading
  •  7.1.2. Fatigue loading
  •  7.2. The role of fretting
  •  7.2.1. The phenomenon of fretting
  •  7.2.2.  Cracking in the  presence of fretting
  •  7.3. Fatigue crack shape development
  •  7.4. Summary of this chapter
  •  Chapter 8: Multiple-Site Damage in riveted lap joints  –  experimental observations
  •  8.1. Examples of aircraft catastrophic failure due to MSD
  •  8.2. Experimental investigations of MSD
  •  8.2.1. Multiple-Site Damage versus Single-Site Damage
  •  8.2.2. Influence of the riveting force on MS
  •  8.2.3. MSD under biaxial loading
  •  8.2.4. MSD tests on fuselage panels
  •  8.2.5. Effect of fuselage design on MSD
  •  8.2.6. Effect of bending, overloads and underloads on MSD
  •  8.2.7. Fatigue behaviour of  lap joints repaired by riveting
  •  8.2.8. Approach to the MSD in aging and new aircraft
  •  8.3. Summary of this chapter
  •  Chapter 9: predictions of Fatigue crack growth and fatigue life for riveted lap joints
  •  9.1. Introduction
  •  9.2. Crack growth prediction models
  •  9.3. Stress intensity factor solutions
  •  9.4. Equivalent initial flaw size (EIFS)
  •  9.5. Fatigue life predictions
  •  9.6. Summary of this chapter
  •  Chapter 10: Residual strength prediction for riveted lap joints in fuselage structures
  •  10. 1. Introduction
  •  10.2. Crack link-up and failure criteria
  •  10.2.1. Plastic zone link-up (PZL) criterion
  •  10.2.2. Elastic-plastic fracture mechanics failure criteria
  •  (a) CTOA failure criterion
  •  (b) T*-integral failure criterion
  •  10.3. Crack growth directional criteria
  •  10.4. Computational issues
  •  10.5. Comparisons between predicted and measured residual strength for fuselage lap joints for self-similar crack growth
  •  10.5.1. Flat panels
  •  10.5.2. Curved panels
  •  10.6. Comparisons between observed and predicted effect of tear straps on crack path
  •  10.7. Summary of this chapter.