Unbounded Self-adjoint Operators on Hilbert Space
The book is a graduate text on unbounded self-adjoint operators on Hilbert space and their spectral theory with the emphasis on applications in mathematical physics (especially, Schrödinger operators) and analysis (Dirichlet and Neumann Laplacians, Sturm-Liouville operators, Hamburger moment proble...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2012.
|
Σειρά: | Graduate Texts in Mathematics,
265 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- I Basics onClosed Operators
- 1 Closed Operators and Adjoint Operators
- 2 Spectrum of Closed Operators
- 3 Some Classes of Unbounded Operators
- II Spectral Theory
- 4 Spectral Measures and Spectral Integrals
- 5 Spectral Decomposition of Selfadjoint and Normal Operators
- III Special Topics
- 6 One-Parameter Groups and Semigroups of Operators
- 7 Miscellaneous
- IV Petirbations of Selfadjointness and of Spectra of Selfadjoint Operators
- 8 Perturbations of Selfadjoint Operators
- 9 Trace Class Perturbations of Spectra of Selfadjoint Operators
- V Forms and Operators
- 10 Semibounded Forms and Selfadjoint Operators
- 11 Sectorial Forms and m-Sectorial Operators
- 12 Discrete Spectrum of Selfadjoint Operators
- VI Selfadjoint Extention Theory of Symmetric Operators
- 13 Selfajoint Extensions: Cayley Transform and Krein Transform
- 14 Selfadjoint Extensions: Boundary Triplets
- 15 Sturm-Liouville Operators
- One-Dimensional Moment Problem.