Differential Geometry and Mathematical Physics Part I. Manifolds, Lie Groups and Hamiltonian Systems /

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reductio...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rudolph, Gerd (Συγγραφέας), Schmidt, Matthias (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Σειρά:Theoretical and Mathematical Physics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03361nam a22005535i 4500
001 978-94-007-5345-7
003 DE-He213
005 20151103124906.0
007 cr nn 008mamaa
008 121116s2013 ne | s |||| 0|eng d
020 |a 9789400753457  |9 978-94-007-5345-7 
024 7 |a 10.1007/978-94-007-5345-7  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Rudolph, Gerd.  |e author. 
245 1 0 |a Differential Geometry and Mathematical Physics  |h [electronic resource] :  |b Part I. Manifolds, Lie Groups and Hamiltonian Systems /  |c by Gerd Rudolph, Matthias Schmidt. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 762 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Theoretical and Mathematical Physics,  |x 1864-5879 
505 0 |a 1 Differentiable manifolds --  2 Vector bundles --  3 Vector fields --  4 Differential forms --  5 Lie groups --  6 Lie group actions --  7 Linear symplectic algebra --  8 Symplectic geometry --  9 Hamiltonian systems --  10 Symmetries -- 11 Integrability -- 12 Hamilton-Jacobi theory --  References. 
520 |a Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact. 
650 0 |a Physics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Differential geometry. 
650 0 |a Mechanics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Mechanics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Differential Geometry. 
700 1 |a Schmidt, Matthias.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400753440 
830 0 |a Theoretical and Mathematical Physics,  |x 1864-5879 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-5345-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)