Machine Learning in Medicine

Machine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Cleophas, Ton J. (Συγγραφέας), Zwinderman, Aeilko H. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2013.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04048nam a22005175i 4500
001 978-94-007-5824-7
003 DE-He213
005 20151204190848.0
007 cr nn 008mamaa
008 130217s2013 ne | s |||| 0|eng d
020 |a 9789400758247  |9 978-94-007-5824-7 
024 7 |a 10.1007/978-94-007-5824-7  |2 doi 
040 |d GrThAP 
050 4 |a R-RZ 
072 7 |a MBGR  |2 bicssc 
072 7 |a MED000000  |2 bisacsh 
082 0 4 |a 610  |2 23 
100 1 |a Cleophas, Ton J.  |e author. 
245 1 0 |a Machine Learning in Medicine  |h [electronic resource] /  |c by Ton J. Cleophas, Aeilko H. Zwinderman. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2013. 
300 |a XV, 265 p. 44 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1 Introduction to machine learning -- 2 Logistic regression for health profiling -- 3 Optimal scaling: discretization -- 4 Optimal scaling: regularization including ridge, lasso, and elastic net regression -- 5 Partial correlations -- 6 Mixed linear modelling -- 7 Binary partitioning -- 8 Item response modelling -- 9 Time-dependent predictor modelling -- 10 Seasonality assessments -- 11 Non-linear modelling -- 12 Artificial intelligence, multilayer Perceptron modelling -- 13 Artificial intelligence, radial basis function modelling -- 14 Factor analysis -- 15 Hierarchical cluster analysis for unsupervised data -- 16 Partial least squares -- 17 Discriminant analysis for Supervised data -- 18 Canonical regression -- 19 Fuzzy modelling -- 20 Conclusions. Index.                                                                                                                                                                                                                                                                                                                                                . 
520 |a Machine learning is a novel discipline concerned with the analysis of large and multiple variables data. It involves computationally intensive methods, like factor analysis, cluster analysis, and discriminant analysis. It is currently mainly the domain of computer scientists, and is already commonly used in social sciences, marketing research, operational research and applied sciences. It is virtually unused in clinical research. This is probably due to the traditional belief of clinicians in clinical trials where multiple variables are equally balanced by the randomization process and are not further taken into account. In contrast, modern computer data files often involve hundreds of variables like genes and other laboratory values, and computationally intensive methods are required. This book was written as a hand-hold presentation accessible to clinicians, and as a must-read publication for those new to the methods. 
650 0 |a Medicine. 
650 0 |a Computer graphics. 
650 0 |a Entomology. 
650 0 |a Literacy. 
650 0 |a Statistics. 
650 1 4 |a Biomedicine. 
650 2 4 |a Biomedicine general. 
650 2 4 |a Entomology. 
650 2 4 |a Medicine/Public Health, general. 
650 2 4 |a Statistics, general. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Literacy. 
700 1 |a Zwinderman, Aeilko H.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400758230 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-5824-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)