Nonlinear Dynamics and Chaotic Phenomena: An Introduction
This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics -- integrable systems, Poincaré maps, chaos, fractals and strange attractor...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Dordrecht :
Springer Netherlands : Imprint: Springer,
2014.
|
Έκδοση: | 2nd ed. 2014. |
Σειρά: | Fluid Mechanics and Its Applications,
103 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Nonlinear Ordinary Differential Equations
- 1.1 First-order Systems
- 1.1.1 Dynamical System
- 1.1.2 Lipschitz Condition
- 1.1.3 Gronwall’s Lemma
- 1.1.4 Linear Equations
- 1.1.5 Autonomous Equations
- 1.1.6 Stability of Equilibrium Points
- 1.1.6.1 Liapunov and Asymptotic Stability
- 1.1.6.2 Liapunov Function Method
- 1.1.7 Center Manifold Theorem
- 1.2 Phase-plane Analysis
- 1.3 Fully Nonlinear Evolution
- 1.4 Non-autonomous Systems
- 2 Bifurcation Theory
- 2.1 Stability and Bifurcation
- 2.2 Saddle-Node, Transcritical and Pitchfork Bifurcations
- 2.3 Hopf Bifurcation
- 2.4 Break-up of Bifurcations under Perturbations
- 2.5 Bifurcation Theory of One-Dimensional Maps
- 2.6 Appendix: The Normal Form Reduction
- 3 Hamiltonian Dynamics
- 3.1 Hamilton’s Equations
- 3.2 Phase Space
- 3.3 Canonical Transformations
- 3.4 The Hamilton-Jacobi Equation
- 3.5 Action-Angle Variables
- 3.6 Infinitesimal Canonical Transformations
- 3.7 Poisson’s Brackets
- 4 Integrable Systems
- 4.1 Separable Hamiltonian Systems
- 4.2 Integrable Systems
- 4.3 Dynamics on the Tori
- 4.4 Canonical Perturbation Theory
- 4.5 Komogorov-Arnol’d-Moser Theory
- 4.6 Breakdown of Integrability and Criteria for Transition to Chaos
- 4.6.1 Local Criteria
- 4.6.2 Local Stability vs. Global Stability
- 4.6.3 Global Criteria
- 4.7 Magnetic Island Overlap and Stochasticity in Magnetic Confinement Systems
- 4.8 Appendix: The Problem of Internal Resonance in Nonlinearly-Coupled Systems
- 5 Chaos in Conservative Systems
- 5.1 Phasse-Space Dynamics of Conservative Systems
- 5.2 Poincar´e’s Surface of Section
- 5.3 Area-preserving Mappings
- 5.4 Twist Maps
- 5.5 Tangent Maps
- 5.6 Poincar´e-Birkhoff Fixed-Point Theorem
- 5.7 Homoclinic and Heteroclinic Points
- 5.8 Quantitative Measures of Chaos
- 5.8.1 Liapunov Exponents
- 5.8.2 Kolmogorov Entropy
- 5.8.3 Autocorrelation Function
- 5.8.4 Power Spectra
- 5.9 Ergodicity and Mixing
- 5.9.1 Ergodicity
- 5.9.2 Mixing
- 5.9.3 Baker’s Tranformation
- 5.9.4 Lagrangian Chaos in Fluids
- 6 Chaos in Dissipative Systems
- 6.1 Phase-Space Dynamics of Dissipative Systems
- 6.2 Strange Attractors
- 6.3 Fractals
- 6.3.1 Examples of Fractals
- 6.3.2 Box-Counting Method
- 6.4 Multi-fractals
- 6.5 Analysis of Time Series Data
- 6.6 The Lorenz Attractor
- 6.6.1 Equilibrium Solutions and Their Stability
- 6.6.2 Slightly Supercritical Case
- 6.6.3 Existence of an Attractor
- 6.6.4 Chaotic Behavior of the Nonlinear Solutions
- 6.7 Period-Doubling Bifurcations
- 6.7.1 Difference Equations
- 6.7.2 The Logistic Map
- 6.8 Appendix: The Hausdorff-Besicovitch Dimension
- 6.9 Appendix: The Derivation of Lorenz’s Equations
- 6.10 Appendix: The Derivation of Universality for One-Dimensional Maps
- 7 Solitons
- 7.1 Fermi-Pasta-Ulam Recurrence
- 7.2 Korteweg-deVries Equation
- 7.3 Waves in an Anharmonic Lattice
- 7.4 Shallow Water Waves
- 7.5 Ion-acoustic Waves
- 7.6 Basic Properties of Korteweg-deVries Equation
- 7.6.1 Effect of Nonlinearity
- 7.6.2 Effect of Dispersion
- 7.6.3 Similarity Transformation
- 7.6.4 Stokes Waves: Periodic Solutions
- 7.6.5 Solitary Waves
- 7.6.6 Peridic Cnoidal Wave Solutions
- 7.6.7 Interacting Solitary Waves: Hirota’s Method
- 7.7 Inverse-Scattering Transform Method
- 7.7.1 Time Evolution of the Scattering Data
- 7.7.2 Gel’fand-Levitan-Marchenko Equation
- 7.7.3 Direct Scattering Problem
- 7.7.4 Inverse-Scattering Problem
- 7.8 Conservation Laws
- 7.9 Lax Formulation
- 7.10 B¨acklund Transformations
- 8 Singularity Analysis and the Painlev´e Property of Dynamical Systems
- 8.1 The Painlev´e Property
- 8.2 Singularity Analysis
- 8.3 The Painlev´e Property for Partial Differential Equations
- 9 Fractals and Multi-Fractals in Turbulence
- 9.1 Scale Invariance of the Navier-Stokes Equations and the Kolmogorov (1941) Theory
- 9.2 The β -model for Turbulence
- 9.3 The Multi-fractal Models
- 9.4 The Random-β Model
- 9.5 The Transition to Dissipation Range
- 9.6 Critical Phenomena Perspectives on the Turbulence Problem
- 10 Exercises
- 11 References
- 12 Index.