An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems.  The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescal...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bowman, Gregory R. (Επιμελητής έκδοσης), Pande, Vijay S. (Επιμελητής έκδοσης), Noé, Frank (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Dordrecht : Springer Netherlands : Imprint: Springer, 2014.
Σειρά:Advances in Experimental Medicine and Biology, 797
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03928nam a22005895i 4500
001 978-94-007-7606-7
003 DE-He213
005 20151030211121.0
007 cr nn 008mamaa
008 131202s2014 ne | s |||| 0|eng d
020 |a 9789400776067  |9 978-94-007-7606-7 
024 7 |a 10.1007/978-94-007-7606-7  |2 doi 
040 |d GrThAP 
050 4 |a QH506 
072 7 |a MBGR  |2 bicssc 
072 7 |a PSD  |2 bicssc 
072 7 |a SCI049000  |2 bisacsh 
072 7 |a MED067000  |2 bisacsh 
082 0 4 |a 611.01816  |2 23 
245 1 3 |a An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation  |h [electronic resource] /  |c edited by Gregory R. Bowman, Vijay S. Pande, Frank Noé. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 139 p. 65 illus., 48 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Experimental Medicine and Biology,  |x 0065-2598 ;  |v 797 
505 0 |a An overview and practical guide to building Markov state models -- Markov model theory -- Estimation and Validation of Markov models -- Uncertainty estimation -- Analysis of Markov models -- Transition Path Theory -- Understanding Protein Folding using Markov state models -- Understanding Molecular Recognition by Kinetic Network Models Constructed from Molecular Dynamics Simulations -- Markov State and Diffusive Stochastic Models in Electron Spin Resonance -- Software for building Markov state models. 
520 |a The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems.  The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models 2) How to systematically gain insight from the resulting sea of data MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states—sets of rapidly interconverting conformations—and the rates of transitioning between states. This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation. 
650 0 |a Medicine. 
650 0 |a Molecular biology. 
650 0 |a Physical chemistry. 
650 0 |a Bioinformatics. 
650 0 |a Computational biology. 
650 0 |a Mathematics. 
650 0 |a Physics. 
650 1 4 |a Biomedicine. 
650 2 4 |a Molecular Medicine. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Computer Appl. in Life Sciences. 
650 2 4 |a Physical Chemistry. 
650 2 4 |a Mathematics, general. 
700 1 |a Bowman, Gregory R.  |e editor. 
700 1 |a Pande, Vijay S.  |e editor. 
700 1 |a Noé, Frank.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789400776050 
830 0 |a Advances in Experimental Medicine and Biology,  |x 0065-2598 ;  |v 797 
856 4 0 |u http://dx.doi.org/10.1007/978-94-007-7606-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBL 
950 |a Biomedical and Life Sciences (Springer-11642)